基于非对称深度监督和平衡内核正切的哈希图像检索

来源 :广东工业大学 | 被引量 : 0次 | 上传用户:a5823869
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
互联网时代的今天,随着信息技术的发展,互联网的数据正在以前所未有的速度增长,这些数据还具有多样性,存在形式可能是图像、文本、音频、视频等等。然而,在大数据时代的今天,庞大的数据集和多彩多样的图像内容也给图像的有效检索带来了挑战。如何有效地提取具有丰富语义信息的高分辨率图像的特征,如何构造更好的损失函数来很好地保留相似性图像的语义信息,鉴于进行线性扫描的时间成本是非常巨大的,那么在大规模的数据集当中如何进行快速有效的搜索呢?哈希学习是基于大规模图像检索的近似近邻搜索的代表方法。为了解决以上问题,本文基于哈希检索的两个方向:离线哈希和在线哈希对哈希检索方法进行研究与改进,主要内容可以总结如下:1.基于SE-Res Net的非对称深度监督哈希方法。本文提出基于SE-Res Net的非对称深度监督哈希方法(SE-ADSH),从如何提取更有效的图像特征出发,采用基于挤压和激励模块SE-Net的Res Net网络来提取图像特征,由于它可以利用网络的损失来为不同的特征图赋予不同的权重,可以保证有效特征图的权重比无效特征图的权重大,因此增强了特征的表达,比Res Net网络的特征提取效果要好。而且,采用对称的方法对查询点和数据库点进行哈希码的生成是非常耗时的,大规模数据集的监督信息也很难被有效利用。本文采用非对称的训练方法,它只为查询数据学习深度哈希函数,模型训练时数据库点的哈希码可以直接生成,这种方法可以在不降低查询精度的情况下大大缩短训练时间。在常见的两个图像检索数据集CIFAR-10和NUSWIDE上,本文的方法表现出了不错的检索效果。2.基于平衡相似性和线性内核正切的在线离散哈希方法。本文提出了基于平衡相似性和线性内核正切的在线离散哈希方法(BSTODH),考虑到所有的图像特征最后都被转换成为哈希码,因此本文从如何更好地进行哈希映射生成更优哈希码的角度出发,对传统的哈希函数进行改进。因为符号函数sgn(?)在零处附近存在很大的弊端,呈现跳跃式的波动,不便于求导。为了解决这个问题,本文采用拥有线性内核的正切函数作为哈希函数,使得哈希映射的过程可以更好地保留相似性。而且,通过构建一个非对称图来保持查询点和数据库点之间的相似性,再利用两个平衡因子来解决数据不平衡造成的相似性矩阵高度稀疏的问题。本文利用公开的数据集与已有的基准方法做比较,综合分析了该内核正切函数的有效性。
其他文献
随着物联网技术的快速发展,信息传输过程中诸如个人隐私等数据的安全已然受到严峻威胁,有关信息安全问题的研究也逐渐被越来越多的研究人员关注。密码学作为信息安全的基础,可以保障信息传递过程中的保密性、完整性以及抗攻击性等。哈希算法是密码算法的一种,它是单向散列函数,具有不可逆的特性,借由这种特性哈希算法可以应用于数据的完整性校验、唯一标识和数字签名等场景。近些年,伴随着密码学的发展,哈希算法也发展出了多
交通标志检测技术是高级辅助驾驶和自动驾驶的关键技术,也对智能交通系统的运行起着重要作用。自然场景中交通标志检测存在交通标志目标较小、外界环境复杂多变、干扰因素多等问题;此外,为了保障驾驶出行安全,需要交通标志检测速度快,满足实时行检测的要求。现有解决方法中基于Faster R-CNN等算法检测交通标志时速度慢,基于SSD、YOLO等算法检测交通标志时均值平均精度低。本文针对上述问题提出了基于改进Y
如今,对于全球各国而言,能源短缺均成为亟待解决的难题,严重阻碍了国家整体的发展。而太阳能,作为一种新兴能源,若能够对其实现充分的运用,能够使能源短缺的情况得到一定的缓解,且能够有效减少对环境造成的污染,因此在后续研发方面有着较为广阔的前景。但如何提高太阳能采集效率成为当下热门研究课题。因此研究一种高精度的太阳能追踪控制系统具有重大研究意义。本文主要对太阳能电池板当前在采光率、自动化等方面存在的问题
现如今,伴随计算机科学理论研究和高新技术的飞速发展,以及现实应用需求的增加,算法的性能要求也随之水涨船高。在无监督机器学习领域中,子空间学习方法因其高效性和高可解释性的特点而被广泛运用。国内外学者对无监督子空间学习方法做了许多研究。包括线性子空间学习方法、流形子空间学习方法和低秩子空间学习方法等。其中,低秩子空间学习方法通过引入低秩约束,可以较为完整地保留原始空间中数据点之间的全局结构信息。本文主
随着信息技术持续不断的发展,网络中涌现了大量的多媒体数据,如视频、图片、文本等。面对如此多的数据,用户对检索的需求也发生了改变,人们不再满足单一模态数据的检索,如以文搜文,而更期待不同模态数据间的检索,即跨模态检索。目前,在大数据的背景下实现跨模态检索主要面临的主要问题为:如何关联不同模态的数据以及如何提高检索的效率。经过多年的探索,研究专家提出了基于哈希的跨模特检索方法。这类方法是通过将原始数据
目前大部分学生对人格缺陷这种病态认知不足,发现不及时且治疗意愿低,而缺陷型人格甚至会导致学生出现边缘性心理以及反社会心理,因此及时感知学生的人格是否健康至关重要。高校学生在线生成的数据量急剧增长,这些数据为我们跟踪、分析和预测学生人格提供了前所未有的机会。特别是最近数据挖掘技术的进步,不只从数据上为我们提供了有力支撑,也提供了更科学的分析方法。当前已有许多研究人员进行了人格的相关研究,这些研究可大
无线局域网(Wireless Local Area Network)技术伴随着通信技术的快速发展应用越来越广泛,设备越来越智能,新一代无线局域网标准在2019年启动认证计划。新标准增加OFDMA和MU-MIMO等关键技术,在有限的频带内实现更快的信息吞吐速度和更大用户容量,同时采用复杂的调制技术(1024QAM)来实现较高的频谱利用率和更低网络延迟,但是会使调制信号具有更高的峰均比。高峰均比的信号
随着人工智能技术的蓬勃发展尤其是以深度学习为代表的基础理论与工程实践的突破,智慧城市及安防相关产业也出现了跨越式发展,其中一个重要应用是智能视频监控系统。监控视频中的异常事件检测又是其中一个非常重要但是非常困难的任务,近期已经有非常多的方法被提出来解决这个问题。之前的方法要么只考虑单方面的外观或运动信息,要么仅仅只是在测试阶段直接整合外观和运动信息的决策结果而不考虑这两个模态内在的一致性关联语义。
随着微机电系统(Micro Electro Mechanical System)技术的发展和微机械加速度传感器制造技术的成熟,微机械加速度传感器得以广泛应用于汽车安全控制和自动导航定位系统、机器人轮廓跟踪和运动控制、电子产品防摔和人体行为识别等诸多领域,研究微加速度传感器显得尤为重要。四悬臂梁压电式加速度传感器相较于传统的单臂和双臂结构的压电传感器而言,灵敏度高、稳定性好、横向效应和噪声低,具有动
随着物联网、5G和人工智能(Artificial Intelligence,AI)的飞速崛起以及高度融合,衍生出了一批又一批基于物联网的新型智能边缘应用(例如,智慧城市、智能安防、无人智能驾驶等)。然而,面对海量零散分布且消耗大量通信计算资源的智能边缘设备,如何提高能效以及创新供能方式成为制约智能边缘发展的瓶颈,如何巧妙联合通讯计算资源设计在降低智能边缘终端设备因模型训练而产生的巨大能耗的同时保证