论文部分内容阅读
列车运行速度的提高对列车驾驶仿真器中的关键——动感模拟系统提出了新的更高要求,很有必要对其进行深入研究,以改善系统性能,提高模拟逼真度。本博士学位论文深入系统地探索了高速列车驾驶仿真器动感模拟系统中的体感模拟算法设计、系统参数匹配及运动平台设计等重要问题,主要研究工作和取得的研究成果如下。1.在分析三种常见体感模拟算法在高速列车驾驶仿真器应用中的不足,和研究高速列车驾驶仿真器体感模拟算法设计中的关键问题的基础上,提出了设计高速列车驾驶仿真器体感模拟算法的实现方法。在该方法中,基于不同洗出位置对模拟逼真度的影响,找到最合适的洗出位置;基于遗传算法,在满足运动平台的快速回位和人体运动感觉阈值的要求下,优化了高速列车驾驶仿真器体感模拟算法固定参数;基于模糊控制,提出了两种高速列车驾驶仿真器的体感模拟算法——模糊经典洗出算法和模糊自适应洗出算法,新算法不仅能满足高速列车驾驶仿真器实时计算要求,而且能获得更高的模拟逼真度。2.提出了高速列车驾驶仿真器动感模拟系统参数的优化匹配策略。通过给出运动平台在六个方向上最大线(角)位移的快速求解方法,建立了高速列车驾驶仿真器运动平台结构参数与洗出算法参数之间的关系,并提出了根据运动平台结构参数确定洗出算法参数的新思路和面向模拟逼真度的仿真器运动平台结构参数优化新方法,利用该方法同时获得了最优的高速列车驾驶仿真器运动平台结构参数和与之匹配的洗出算法参数。3.研究了高速列车驾驶仿真器运动平台的创新设计。提出了一种基于型数综合的六自由度并联机构系统构型新方法。运用该法构造出3PPRS并联机构作为高速列车驾驶仿真器新型运动平台,并面向模拟逼真度优化出其结构参数。运动学动力学仿真和与6SPS并联机构的性能比较结果表明:3PPRS并联机构能模拟高速列车运动,更有潜力作为高速列车驾驶仿真器运动平台。借助ADAMS、MATLAB软件完成本论文的建模、分析、仿真和优化工作。