【摘 要】
:
高分辨率的城市遥感图像细节复杂内容丰富,能准确的反映地表信息。利用深度学习技术对城市遥感图像进行语义分割,可以对城市的道路、水体和建筑等信息进行不间断的动态检测,有利于全面、高效地了解城市的发展。本文针对高分辨率城市遥感图像因背景复杂、目标尺度大小不一而导致的分割难度较大问题,进行了以下研究:(1)针对数据集样本少且类别分布不平衡的问题。首先采用一定的步长对原图和标签图进行裁剪,然后通过镜像翻转、
论文部分内容阅读
高分辨率的城市遥感图像细节复杂内容丰富,能准确的反映地表信息。利用深度学习技术对城市遥感图像进行语义分割,可以对城市的道路、水体和建筑等信息进行不间断的动态检测,有利于全面、高效地了解城市的发展。本文针对高分辨率城市遥感图像因背景复杂、目标尺度大小不一而导致的分割难度较大问题,进行了以下研究:(1)针对数据集样本少且类别分布不平衡的问题。首先采用一定的步长对原图和标签图进行裁剪,然后通过镜像翻转、高斯加噪、平移变换以及光照调整等操作对数据集进行增广。同时,对数据集中的小样本进行过采样,有效的避免了在训练过程中出现过拟合的现象,提高网络的泛化能力。(2)在应用SegNet和U-Net网络进行城市遥感图像语义分割研究的基础上,本文基于SegNet模型,提出了一种逐层特征融合的网络模型U-SegNet,该模型在解码过程中运用无参数的双线性插值法逐层恢复特征图的空间信息,同时引入跳跃连接将深层特征图上采样的结果与编码器中对应尺寸的浅层特征图进行融合,有效的解决了 SegNet网络在分割中存在的稀疏现象,提升了分割效果。(3)针对城市遥感图像中存在不同尺度的目标,U-SegNet网络无法提升对小目标的分割精度。在U-SegNet的基础上,提出了 DAU-SegNet,通过引入了残差块来加深网络,表征更高维的特征信息,同时引入多孔空间金字塔池化模块,并行使用不同空洞率的空洞卷积,利用不同尺度的感受野,实现多尺度的特征提取。(4)受集成学习启发,将SegNet、U-Net、U-SegNet和DAU-SegNet四种学习器进行模型融合。通过对每个学习器输出的分割结果图逐个像素进行投票,将票数最多的类别作为该像素点的类别,对分割结果进行集成优化,提升分割精度。实验结果表明,本文提出的DAU-SegNet网络在公开的CCF数据集上取得了较好的分割效果。
其他文献
2020年是不同寻常的一年,全球经历了史无前例的新型冠状病毒COVID19,在疫情期间,我国推出了很多防疫措施,抑制了疫情的侵袭蔓延。于是,提出了“无接触”概念,智能语音问答交互技术等无接触式人机交互技术突显出了优势。因此,本文以智能语音问答为研究方向实现无接触人机交互。语音问答技术实现需要解决三个问题,语音识别、知识库的建立、答案匹配。语音识别作为前端数据入口,其识别正确率直接关系到后端问答系统
随着互联网的普及与高速发展,软件应用对并发量和服务质量的要求越来越高,推动着互联网的架构不断演变。迅速增长的用户规模,日益复杂的业务系统,导致网络的并发访问流量爆发式增长。单一的服务器架构受限于硬件和网络带宽等,难以应对海量的用户访问,集群和负载均衡技术应运而生,它们能够提供更强大的任务处理性能和容错能力。其中,微服务架构以其优秀的组织结构和开发性能得到了广泛关注,可以通过将复杂系统拆分成多个独立
范宽,北宋山水画三大名家之一,他发展了荆浩的北方山水画派,主张"外师造化,中得心源",对后世影响深远。本文从"师法自然"的艺术理念出发,结合其家乡照金的山水景观,重新感受《溪山行旅图》中所描绘的景象,在作者的带领下,更进一步地理解范宽山水绘画的艺术源流。
近年来,由于化石燃料的燃烧和烟花爆竹的燃放等行为,造成了严重的空气污染问题,使得空气质量不断下降。不论是国家、政府还是人民都想对空气质量进行评估,以便于采取相应措施将空气质量控制在一个合理的范围之内。而现有市场上的空气质量检测仪存在着体积较大且不利于随身携带等缺点,如果能够结合可穿戴设备体积小巧且方便穿戴的优点,便能随时随地对周围环境的空气质量进行实时监测,使得人们能够及时地了解到此时此刻的空气质
将深度学习技术应用于甲状腺超声图像中结节的检测与识别并辅助医师进行性状识别具有重要意义和应用价值。课题主要研究内容和取得的阶段性成果如下。首先,针对现有的甲状腺结节自动检测与识别方法在较高IoU阈值(IoU>=0.75)情况下,可能存在检测精度不高的问题。本文以当前目标检测领域先进的IoU-Net模型为基础,提出并构造了一个针对高质量的甲状腺结节自动检测与良恶性识别模型---Trident R-C
随着体育产业的蓬勃发展,体育图像数据量呈指数增长,对体育图像进行有效的分类就非常重要,这既可以方便用户快速检索和访问,也便于工作人员对体育图像资料进行存储和管理,同时还有助于体育产业的智能化发展。目前许多卷积神经网络在图像分类任务上取得非常好的精度,但网络模型的大小和运算量也随之增长,这就需要依赖计算机设备具有强大的计算能力和内存,这在一定程度上限制了卷积神经网络在资源有限的计算机设备上进行广泛的
在布匹的实际生产过程中,由于生产设备故障和操作不当等因素的影响,易致使布匹产生折痕、破洞等瑕疵。为保证产品质量,需要对布匹进行瑕疵检测识别,布匹瑕疵检测识别也成为纺织品企业生产和质量管理中的重要环节。但是目前纺织品企业大都是依靠人工肉眼去检测布匹是否存在瑕疵,这种方法不仅存在检测效率低下、缺乏一致性等问题,而且人工检测易受体能制约和主观因素影响,出现漏检和错检等问题。鉴于上述原因,设计并开发一种能
互联互通的全球化步伐逐渐加快,通过手机拍摄的文件、图书等文本图像成为便捷高效的信息交流形式。在文本图像分析流程中确定文本图像的语言种类,即文种识别,是多文种OCR技术的重要一步,对于索引和搜索等后续处理步骤至关重要。然而,文本图像在手机拍摄下容易发生仿射变化以及模糊失真等情况,增加了文种识别的难度。本文以提高文本图像文种识别准确率为目的,利用深度神经网络模型的优势进行文种识别的研究。主要研究工作如
当前水务部门的抄表存在着诸多问题,一是抄表人员通过手掌一体机到营业所下载抄表任务,然后携带抄表机奔赴现场抄表,从而导致人工效率低下、人工成本高;二是手掌一体机没有导航功能,在安排任务时需要考虑抄表人员对道路的熟悉程度,从而导致抄表计划安排比较困难;三是管理人员无法把控抄表人员的现场工作,无从考量抄表结果,从而导致监管不力等等。因此开发一套基于深度学习的智能抄表系统对水务部门来说是有意义和价值的。本
随着计算机技术迅速发展和我国网民人数高达9.04亿,网购成为人们购物的首选。传统推荐算法在商品爆炸式增长的情况下进行个性化推荐时,一直面临着数据稀疏、商品冷启动和用户兴趣难挖掘等问题。本文利用深度学习具有非线性学习能力,在推荐系统中能自动进行特征学习挖掘出用户及物品间的隐含和潜在特征,解决了用户兴趣难挖掘问题。用one-hot编码和Embedding嵌入层把高维稀疏的数据特征转化为低维稠密型特征,