【摘 要】
:
窄线宽光纤激光器除了结构紧凑、热管理方便、工艺成熟之外,还具有高单色性和超高相干性等优良特性,在光纤相干通信、高精度测距、相干雷达探测、军事国防等领域具有广阔的应用前景。然而窄的激光线宽降低了受激布里渊散射的阈值,使得单路窄线宽激光输出功率规模难以提升,严重影响了其应用。因此,展宽光源线宽不仅能提升其输出功率,又能满足工业、军事上对激光线宽的要求。其中,利用非线性效应的方式展宽光源的线宽,具有展宽
论文部分内容阅读
窄线宽光纤激光器除了结构紧凑、热管理方便、工艺成熟之外,还具有高单色性和超高相干性等优良特性,在光纤相干通信、高精度测距、相干雷达探测、军事国防等领域具有广阔的应用前景。然而窄的激光线宽降低了受激布里渊散射的阈值,使得单路窄线宽激光输出功率规模难以提升,严重影响了其应用。因此,展宽光源线宽不仅能提升其输出功率,又能满足工业、军事上对激光线宽的要求。其中,利用非线性效应的方式展宽光源的线宽,具有展宽效果稳定、且实现方式相对简单的特点。本文基于窄线宽光纤激光器和级联四波混频效应(Cascaded four-wave mixing,CFWM)来进行了线宽展宽技术研究,具体研究内容和取得成果如下:(1)通过耦合模理论和广义非线性薛定谔方程(Generalized nonlinear Schrodinger equation,GNLSE)两种途径对连续波泵浦CFWM的演化过程进行理论与仿真分析:首先,在耦合模理论的基础上,对FWM光场进行了建模仿真,并探究了不同因素对FWM效率的影响;其次,考虑非线性级联的发生,结合GNLSE并建立合适的初始连续光场的数值模型,对连续光泵浦CFWM的演化进行了理论仿真,并对不同相互作用长度、不同泵浦功率条件下的CFWM级联情况进行了预测与分析。(2)采用双腔双泵浦CFWM的窄线宽光纤激光器进行了线宽展宽技术研究:首先,利用两路基于温度调谐与压电控制的波长可调单频光纤激光(Single-frequency fiber laser,SFFL)SFFL1和SFFL2作为CFWM泵源,其中,在16~34℃范围内,SFFL1和SFFL2调谐范围分别为1063.895~1064.045 nm和1063.879~1064.032 nm,温度敏感性为8~9pm/℃,3 V以内可实现1 pm以内波长微漂移,SFFL1和SFFL2线宽分别为6.2 k Hz、19 k Hz;其次,将SFFL1、SFFL2合束送入光子晶体光纤中,结合可调谐泵源与CFWM的展宽效应实现了窄线宽光纤激光的线宽展宽,当混频泵浦功率为890 m W时,其展宽线宽为9.58 GHz;研究发现,通过缩短泵源的波长间距,其谱线宽度变小。(3)采用单腔双泵浦CFWM的窄线宽光纤激光器进行了线宽展宽技术研究:首先,制作并搭建了快、慢轴正交偏振双波长单频激光种子源,双波长激光波长分别位于1063.72 nm、1064.07 nm,其信噪比>66.2 d B,输出功率为11.5 m W,15 min内功率稳定性为±1.3%;其次,将此双波长激光共同放大后送入光子晶体光纤中作为CFWM的泵浦光,利用CFWM的展宽效应实现了窄线宽光纤激光的线宽展宽,当混频功率为858 m W时,其展宽线宽为15.8 GHz。
其他文献
近年来,随着现代化工业的发展和环保节能的需要,利用高速电主轴实现的高速加工技术在制造业已得到广泛的使用。维持高速轴承较低温升所需的润滑油并不是越多越好,当润滑油处于最佳值,形成油膜使得摩擦表面分离,温升和磨损都降至最低。因此,高速电主轴需要连续、微量的润滑油,而传统的润滑泵只能实现间歇供油。油气润滑系统利用气流将润滑油输送至润滑点,解决了这一矛盾。首先,本文针对油气润滑的特性,对润滑油进行了选型,
环氧树脂(EP)因具有优异的物理化学性能,广泛用于电子电气、航空航天和化学工业等领域;但也存易燃及燃烧过程释放CO等有毒气体和浓烟等缺陷。膨胀阻燃剂能有效提高EP阻燃等级,但实际燃烧中存在膨胀炭层因强度低和塑性差等不足,导致受热膨胀过程中炭层发生破裂而降低阻燃效率。当采用基于羧基纤维素或蔗糖的新膨胀阻燃体系时,阻燃EP的膨胀率、炭层塑性和熔体强度提高,同时燃烧过程烟气、热释放量降低。在绿色环保和可
区块链是一种在不具备可信任条件的网络中传输可信信息、实现价值传递的分布式账本,它是近年来最具革命性的新兴技术之一,并在金融、政务、溯源、物联网、版权保护等领域有着广泛的应用。然而,区块链技术的发展仍面临着可扩展性等关键技术瓶颈,这使得可扩展性提升的关键技术——区块链共识协议成为当前的研究热点。主流的共识协议中,以工作量证明(Po W)为代表的证明类共识协议能确保最终一致性,但性能低下且存在高能耗等
自上世纪下半叶以来,由于受能源危机的影响,欧洲首先开启了大规模的波浪能研发。欧洲海洋能源中心(EMEC)发布的相关数据显示,2017年全世界正在研发的波浪能发电装置多达200余种,且技术成熟度发展不一,各型式装置均具备一定的发展前景。总体来说取得了迅猛发展,并且在商业化方向上取得了一定成就。但是,与海洋风能开发进展相比,波浪能距离大规模开发利用还有很长的路要走。制约其大规模开发利用的主要因素为:装
石墨烯三维多孔材料因其具有高弹性、丰富的多孔结构等特征被广泛用于柔性压阻传感材料领域。研究人员通常以柔性高分子材料(如橡胶、聚氨酯、聚二甲基硅氧烷等)为基体,将氧化石墨烯(GO)片层沉积到聚合物基体或骨架上,经还原后制得石墨烯三维多孔材料。然而,由于制备过程中石墨烯片层间较强的π-π相互作用和范德华力的存在,使石墨烯片层易于发生不可逆团聚,影响了聚合物基体与石墨烯片层之间的结合,使得石墨烯三维多孔
相变材料通过相变过程实现潜热的释放和储存,达到温度缓冲和热能调控的功能,含有相变材料的功能织物可减少由于环境温度的急剧变化导致人体的不适,使人体体表温度维持在一个相对稳定的温度区间和皮肤-织物间的热微环境,提升织物的穿着舒适度,减少环境温度控制所需能耗。具有高封装率的相变储能织物可提供高的相变热焓,但在纤维弹性、潜在泄露问题尚有很大的提升空间。同时,传统相变织物的温度调控时间很短,难以在户外长时间
Stanford B型主动脉夹层(Stanford B aorric dissecrion,简称SBAD)是一种高危主动脉疾病,临床表现为主动脉内膜撕裂,血液经内膜破口进入主动脉壁,造成主动脉壁中层沿长轴分离,形成真腔和假腔的病理状态。B型夹层的主要治疗手段是腔内修复术(thoracic endovascular aortic repair,简称TEVAR),用支架封堵破口以重塑真腔。在介入治疗前
含氟丙烯酸酯乳液以水作为分散介质,具有许多优点,如零VOC(挥发性有机化合物)排放,生产成本低、生产安全性高等。由于含氟聚合物具有较低的表面能,应用织物整理剂上,具有较好的疏水疏油效果,但是由于长链含氟聚合物具有生物积累性和毒性,欧盟也出台相关法律法规限制使用长链含氟聚合物。综上考虑,本文首先通过预乳化半连续种子乳液聚合方法合成短碳链含氟丙烯酸酯乳液,并探讨各种因素对聚合物的影响。当甲基丙烯酸甲酯
空穴传输材料能有效修饰电极,提高有机太阳电池的转换效率和器件的稳定性。水分散性掺杂态自由基聚合物PEDOT:PSS-4083作为现今应用最广泛的空穴传输材料之一,具有成膜性好、透光率高、易于加工等优点。然而,几个关键的因素也限制了PEDOT:PSS的发展。PEDOT:PSS中含有过量不导电的PSS大分子,存在一定的磺酸基团未与PEDOT进行掺杂,致使其功函数较单一、电导率相对较低且导电均匀性较差。
双工天线的结构紧凑、效率高,可减少无线通信设备的体积和重量,在小型一体化无线通信设备中具有重要的应用需求。卫星天线的馈源大多数都要求双工、宽频带、轻量化和紧凑性等特性,而在卫星反射面天线中,常见的VSAT,它是英文“Very Small Aperture Terminal”(甚小口径终端)的缩写,简称小站,是指一类具有甚小口径天线的智能化小型或微型地球站。传统方式设计的VSAT馈源往往不具备双工、