【摘 要】
:
集成电路在摩尔定律的推动下不断的快速发展,该定律要求芯片外接电压降低,尺寸不断减小。开关电源使用二极管进行整流,需达到正向导通压降才能使其导通,该压降使系统的整流损耗增加。当系统工作在大电流低压条件下时,其效率会大幅降低。因此需要降低正向导通压降,目前最有效的方法是使用功率MOSFET代替二极管,MOSFET的低导通阻抗特性可以降低电路的整流损耗,系统效率从而能够得到提升,该技术被称为同步整流(S
论文部分内容阅读
集成电路在摩尔定律的推动下不断的快速发展,该定律要求芯片外接电压降低,尺寸不断减小。开关电源使用二极管进行整流,需达到正向导通压降才能使其导通,该压降使系统的整流损耗增加。当系统工作在大电流低压条件下时,其效率会大幅降低。因此需要降低正向导通压降,目前最有效的方法是使用功率MOSFET代替二极管,MOSFET的低导通阻抗特性可以降低电路的整流损耗,系统效率从而能够得到提升,该技术被称为同步整流(Synchronous Rectification,SR)技术。MOSFET为双向导通的有源器件,二极管为单向导通的无源器件,因此同步整流技术需要设置合适的驱动程序和较大的电流驱动能力来控制功率MOSFET正常工作。本文设计了一种同步整流驱动芯片,其适用于反激变换器(Flyback Converter),芯片对SR管的漏源电压进行实时负压采样,与同类功能芯片对比,本文改进了同步整流驱动机制,增加SR管栅压提前下拉功能,通过降低SR管栅压来增加导通阻抗,延长SR管的导通时间,因而对应的体二极管续流时间消除,同步整流的效率得到提高,该功能也适用于轻载条件,防止SR管过早关断,另外在连续导通模式(Continuous Conduction Mode,CCM)下,由于SR管关断时栅压已经降低,因此可以快速关断SR管,减缓CCM模式下反激变换器原副边侧穿通,提升同步整流效率。同时设计出SR管电压斜率检测方案,通过检测SR管漏端电压斜率的变化,屏蔽掉断续导通模式(Discontinuous Conduction Mode,DCM)下漏端电压的谐振以及寄生电感、电容造成的Vds扰动,保证同步整流驱动电路的可靠性,此外该电压斜率可以通过外接电阻进行调节或使能,满足不同的电路应用需求。本文首先介绍了同步整流技术的工作原理,分析SR管在损耗方面与二极管的差异,以及SR管选型时对参数的考虑,对比介绍Flyback高低侧接法的优缺点,介绍同步整流驱动主流的轻载检测模式。然后给出本文设计的同步整流驱动芯片的工作原理与架构、相关技术问题的分析以及内部子模块电路设计。电路基于最小线宽为0.35μm的BCD工艺模型完成了电路设计、仿真与版图绘制,并将实验室设计的同类芯片流片后搭载在Flyback变换器系统中进行测试,通过两款芯片的比较证明本文设计的芯片在性能上得到了提升,并加深了同步整流技术的理解,且对测试过程中遇到的问题进行了分析。
其他文献
在真空电子器件领域,行波管经过几十年的发展,已经被广泛的应用到国防科技、卫星通信等各个领域。其大功率、高效率、可靠性高等特点成为了其与固态器件竞争的重要优势。随着快速发展的第五代移动通信系统的逐渐普及,同时各领域在低频范围内的频谱资源分配愈发紧张,将毫米波技术应用到现代通信系统中可谓大势所趋,也为行波管这一具有悠久发展历史的器件注入了新的生命力。但是,从行波管注波互作用理论出发不难发现,此类器件是
石墨烯是sp~2杂化的碳原子按蜂巢状紧密排列形成的二维材料。石墨烯具有优异的电学、光电、力学等性能,可广泛应用于微电子、光电子器件、航空等领域。石墨烯薄膜常用的制备方法是化学气相沉积法(CVD)。铜基底是CVD制备石墨烯最常用的基底,它不仅拥有较好的表面催化能力,还有非常低的碳溶解度。现有的商用铜基底中,铁这种杂质元素是很难去避免的。因此,搞清铜基底上铁杂质元素对石墨烯生长的影响规律和机制进而提出
近几十年,晶体管的特征尺寸一直按照摩尔定律逐渐缩小,来到纳米尺度后,越来越严重的短沟道效应极大阻碍了器件性能的进一步提升。在此背景下,FinFET和GAAFET相继被提出,由于其在晶体管结构和形态上的创新使得相比传统平面MOS,它们拥有更卓越的性能优势。但FinFET和GAAFET并非完美器件,它们的沟道通常采用轻掺杂甚至不掺杂的本征硅来降低散射,通过三栅或者四栅结构来加强栅极对沟道的控制作用,因
在微波通信技术飞速进步的大背景下,器件小型化、多功能化和高集成度的趋势推动了新型材料的发展,同时也加速了低温共烧陶瓷(LTCC)技术的发展。LTCC材料烧结温度通常低于960℃,材料具有与应用场景相匹配的介电常数、较高的品质因数和近零的频率温度系数。探索低温烧结条件下具有优良性能的电介质材料成为一项迫切的课题。本论文的研究主要围绕以下两大方向展开:(1)探索中等介电常数(20≤εr≤80)的低温共
神经网络多采用冯·诺依曼架构计算机软件的形式进行工作,但随着神经网络结构愈发复杂、规模日益增大,在计算机上实现神经网络面临实现难度大、资源需求高、运算速度低等缺点。而基于存算一体的神经网络硬件实现方案,从结构和功能上模拟了生物神经元与神经系统,也克服了其在计算机上实现所面临的缺点。因此,本文设计了一种基于互补金属氧化物半导体(Complementary Metal Oxide Semiconduc
合浦珠母贝(Pinctada fucata)贝壳由珍珠层和棱柱层两种矿化层组成,其形成过程涉及一个矿化平衡的过程。间液位于珠母贝贝壳和外套膜之间,被认为在贝壳形成中起重要作用。然而,对间液的功能研究却相对较少。碳酸钙体外结晶实验表明间液蛋白不仅能够控制CaCO3晶体的形貌,而且能够通过文石和方解石特异结合蛋白调控CaCO3的晶型转变。结晶抑制实验表明,当CaCl2和NaHCO3的浓度从50mM降低
太赫兹波位于电子和光子学的过渡区间,具有较好的穿透性、光子能量低、带宽大等优异性能。将太赫兹技术运用于通信领域,可提高通信系统的传输速率、安全性,相对于激光通信并更易跟踪与对准。太赫兹无线通信系统中,太赫兹调制器是在系统发射端实现调制的重要器件。因此作为系统中的关键器件之一,越来越多的研究被投入到调制器中。针对目前调制器所面临的工作带宽窄、集成化难、速率低等挑战,本文设计了四种不同类型的调制器,通
模数转换器(Analog-to-digital converter,ADC)可以将模拟信号转变为易于计算机处理的数字信号,在信号处理系统中起着至关重要的作用。随着人们越来越追求快速地处理信息,高速ADC成为了模数转换器的一个重要分支,而折叠内插ADC有着堪比全并行ADC的处理速度,同时其电路规模和功耗却相对较小,是高速ADC中的重要研究对象。由于异质结晶体管(HBT)相比CMOS晶体管有着更高的截
目前的IC行业中,尤其是较为先进工艺下的芯片产品,由静电放电(Electrostatic Discharge,ESD)造成产品失效的隐患越来越高,ESD失效已经属于导致芯片可靠性问题的主要因素。静电现象在日常中随处可见,IC行业针对于静电的防护已经从源头到最终产品应用各个环节全方面采取措施。随着IC制造工艺变革,也给芯片静电防护设计增添了很多技术环节变化,本文就将对先进IC工艺下静电防护的设计,包
硬X射线调制望远镜(HXMT)运行于550km近地轨道,空间中荷电粒子与HXMT相互作用会在主要载荷高能主探测器中引发X射线本底,降低探测器灵敏度。反符合探测器设计用于包围在主探测器前向2π立体角探测环境荷电粒子,其输出信号与主探测器信号反符合,实现以主动方式屏蔽荷电粒子诱发的本底事例。反符合探测器由6个顶面探测器和12个侧面探测器组成,主要设计指标为单机探测效率95%,对主探测器死时间影响0.1