高κ栅GaN功率器件的仿真与制备

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:poshashajia
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着5G、消费类电子、新能源汽车、智能电网等领域的蓬勃发展,对于功率器件的需求日益增加,氮化镓(GaN)功率器件凭借高击穿电压、高载流子迁移率、低导通电阻等诸多优势,站上了时代的风口。作为GaN功率器件研究的重心,AlGaN/GaN异质结HEMT器件的科学研究已将近30年,其性能不断优化,但还有一些问题亟待解决。本文采用基于高介电常数栅介质HfSiO的凹槽栅GaN MIS-HEMT结构,实现增强型器件,改善器件漏电,提高击穿电压。首先,利用Sentaurus软件对耗尽型和凹槽栅增强型GaN MIS-HEMT进行仿真。从仿真得到的能带图以及转移特性曲线上看,我们采用凹槽栅结构实现了增强型器件。考虑GaN HEMT的自热效应,采用了热力学模型,从仿真结果中观察到负微分电阻现象(NDR),并且仿真分析了器件工作时的晶格温度情况。除此之外,还仿真了器件在关态下的击穿特性。仿真结果可为后续实验提供理论指导。然后,制作了基于高κ栅介质的GaN MIS-HEMT器件。凹槽栅采用原子层刻蚀方法,刻蚀深度可控以及界面粗糙度低。源漏电极采用了Ti/Al/Ni/Au的工艺和Al/Ti N的低温无金工艺,均实现了器件的欧姆接触。栅介质采用了原子层沉积(ALD)方法,生长出高质量的HfSiO栅介质。凹槽栅GaN MIS-HEMT电学表征的结果表明器件开关比可达1010,比导通电阻为5.4 mΩ·cm~2,并且击穿电压达1200 V。最后,制备了多指型凹槽栅GaN MIS-HEMT器件,器件尺寸为3 mm×3 mm,总栅宽120 mm。相比于小尺寸GaN器件工艺,增加了多指互连和电镀工艺,电学表征结果表明器件最大饱和输出电流为26 A,导通电阻为150 mΩ,击穿电压为125 V。
其他文献
第一部分尿中单种金属或尼古丁代谢物浓度与肥胖风险的剂量?反应关系目的:评估社区老年人群尿中单种金属或尼古丁代谢物的浓度与肥胖风险的相关性。方法:研究对象选自深圳市老年相关疾病队列的9411名基线人群。所有对象均完成了健康问卷调查和体检,当剔除尿金属、尿尼古丁及尼古丁代谢物、教育程度、锻炼、吸烟状况、饮酒状况、糖尿病、高血压、体质指数的信息缺失者后,有7049人纳入以体质指数(body mass i
癌症恶病质(cancer cachexia)是一种涉及全身的消耗性疾病,其主要表现在于显著的体重减轻、肌肉和脂肪萎缩及系统性炎症。其中,最主要的特征是骨骼肌的消耗和其质量的下降。在癌症发生、发展的过程中,micro RNA充当癌基因或抑癌基因发挥作用,同时,有实验证实micro RNA在肌肉生长和萎缩过程发挥重要作用。在本研究中,我们用小鼠Lewis肺癌细胞(Lewis lung carcinom
脲酶(EC 3.5.1.5)是人类发现的第一种含镍金属酶,可以催化尿素最终水解生成铵和碳酸盐,目前生物矿化领域应用最多的产脲酶菌主要是巴氏芽孢八叠球菌。但是,截至目前为止,关于野生八叠球菌分子改造的报道少见。通过亚硝基胍化学诱变选育八叠球菌脲酶高产菌株的工作具有随机性且工作量非常大。因此,选择合适的脲酶基因簇和表达系统,结合蛋白质工程手段和分子生物学手段实现脲酶的高效表达具有重要的意义。本研究旨在
随着5G技术的飞速发展和以GPU为代表的计算设备算力的不断提升,边缘计算的重要性日益凸显。一方面,基于单视角图像的目标检测、识别与跟踪算法遇到了性能提升的瓶颈,大数据驱动的深度学习算法也难以解决复杂环境下目标的剧烈形变和抗遮挡问题,有必要引入异视角信息增强算法性能和鲁棒性;另一方面,传统云计算模式出现了通信带宽瓶颈和安全性等弊端。研究基于智能边缘计算的多机协同目标检测、识别与跟踪方法,可以很好的解
近几十年来,集成电路技术飞速发展,集成度不断地提高,性能不断增强,然而受限于其物理性质的限制,集成电路的速率、延迟和功耗等逐渐成为了无法忽视的问题。而硅基集成光子芯片与集成电路相比在这些方面有着巨大的优势,因此近年来成为了研究热点,各种高性能的硅基器件被成功实现。然而要想真正的实现集成光子芯片的实际应用,除了需要高性能的器件之外,还需要高性能的耦合器用于实现芯片与光纤之间的耦合。光栅耦合器由于其制
数字经济已成为经济发展的新动能,但如何衡量数字经济及其对企业创新的影响机制仍缺少深入的研究。本文从消费者、厂商、政府三部门角度出发构建包含“数字产业化”“产业数字化”和“数字化治理”三大维度的数字经济指标,并基于2011—2020年中国A股上市公司数据开展实证分析,探索数字经济对企业创新的促进效应、异质性及其作用机理。研究结果表明,数字经济发展对企业创新存在显著的驱动效应,且可以起到一定的“结构性
振动问题是旋转机械普遍存在的问题,振动会导致噪声和关键部件失效等不良影响。主动磁悬浮轴承利用电磁力实现转子的无接触支撑,因无摩擦、无碰撞、不需润滑等优势已在高速电机、飞轮储能和压缩机等场合得到应用。磁悬浮轴承的主动控制功能可对旋转机械的振动问题进行解决。本文针对磁悬浮轴承控制系统的电流振动问题和位移振动问题等进行研究,提出了相应的控制方法改善振动问题,有利于磁悬浮轴承技术的进一步工业应用与推广。具
混合流水车间调度问题(Hybrid Flow-shop Scheduling Problem,HFSP)是流水车间调度问题与并行机调度问题的综合,广泛存在于造纸、制药和半导体等制造业的实际生产中。由于该问题是NP-hard问题,很难用传统的数学规划方法进行高效求解。本文研究了单目标HFSP、多目标HFSP和多目标动态HFSP,并基于萤火虫算法(Firefly Algorithm,FA)设计了高效的
蛋白质在细胞及生物体的生命活动中起着重要作用。蛋白质从一级结构折叠成正确的三级结构才能实现其生物学功能,错误的折叠将会引起一系列疾病。蛋白质折叠分为细胞内折叠(体内折叠)和细胞外自由折叠(体外折叠),新生肽链在细胞内核糖体上边翻译合成边折叠称为共翻译折叠。与体外折叠相比而言,共翻译折叠中新生链会与核糖体蛋白质释放通道、核糖体表面及分子伴侣相互作用。已有研究显示共翻译折叠可以降低蛋白质的错误折叠,提
近年来等离子体学科逐渐兴起成为一门新兴学科,并已应用于各个领域,其中又以等离子体医学领域的发展最具有前景。等离子体生物医学应用主要体现在等离子体杀菌消毒和等离子体处理肿瘤细胞等方面。等离子体医学应用的发展中,等离子体剂量这个问题一直无法得到被广泛接受的科学定义。由于RONS是主导等离子体生物效应的关键活性粒子,它们在等离子体处理细菌等方面扮演着关键角色,并且在细胞的病理过程起重要作用,因此基于RO