【摘 要】
:
磁镊是单分子力谱技术之一,具有高通量以及对实验样品损伤小等优点。它通过施加力将单个分子的内部结构打开,从而在单分子的水平上研究样品的稳定性机制以及可能存在的内部结构。本文主要是使用磁镊技术对单个核小体展开的研究。论文工作主要取得了以下进展。(1)我们发现组蛋白H2AK119的泛素化会加强核小体的稳定性。每个核小体有两个H2A组蛋白,当两个H2A组蛋白都泛素化后,核小体外圈打开力由5pN增加到20p
【机 构】
:
中国科学院大学(中国科学院物理研究所)
【出 处】
:
中国科学院大学(中国科学院物理研究所)
论文部分内容阅读
磁镊是单分子力谱技术之一,具有高通量以及对实验样品损伤小等优点。它通过施加力将单个分子的内部结构打开,从而在单分子的水平上研究样品的稳定性机制以及可能存在的内部结构。本文主要是使用磁镊技术对单个核小体展开的研究。论文工作主要取得了以下进展。(1)我们发现组蛋白H2AK119的泛素化会加强核小体的稳定性。每个核小体有两个H2A组蛋白,当两个H2A组蛋白都泛素化后,核小体外圈打开力由5pN增加到20pN,对应着20nm的伸长量。当仅有一个H2A组蛋白泛素化后,核小体的外圈打开分为两步,一步是5pN,对应着10nm的伸长量,一步是19pN,对应另外10nm的伸长量。也就是说,组蛋白H2AK119的泛素化可以增强核小体的稳定性,单边的泛素化可以增强单边核小体的稳定性。我们的生化实验表明泛素分子既不与组蛋白八聚体有相互作用,也不与缠绕在组蛋白八聚体外的DNA有相互作用。另一方面,将组蛋白八聚体交联起来后的磁镊实验表明,核小体内外圈的打开力与不交联的样品结果一致,也就是说核小体也不是通过增强组蛋白八聚体整体的稳定性来增强核小体的稳定性的。所以我们最终推测泛素分子通过物理的空间位阻将核小体的进出口封住从而实现其稳定核小体的功能。(2)我们通过单分子磁镊实验发现染色体重构复合体SWR1的亚基Swc2可以选择性的识别H2A核小体。H2A核小体外圈的打开力值为5pN,内圈的打开力值为23pN。当在体系中加入Swc2后,H2A核小体的外圈打开力值为2pN,内圈打开力值为5pN,Swc2降低了核小体的稳定性。但是Swc2对H2A.Z核小体并不产生影响,加入Swc2后,H2A.Z核小体的内外圈打开力值保持不变,其中外圈打开力值为16pN,内圈打开力值为25pN。也就是说,Swc2对核小体具有选择性。染色体重构复合体将H2A核小体替换成H2A.Z核小体的过程中,H2A组蛋白的两个domain起重要作用,一个是M4,一个是M6。我们分别对这两个domain做替换,发现,在Swc2的选择过程中其主要作用的是M4 domain。另一方面我们还发现M4 domain起主要作用的原因是它能够决定核小体的稳定性。因为H2A.Z的M4 domain能够加强核小体的稳定性,所以Swc2不容易对H2A.Z核小体起作用。
其他文献
鬼成像是一种利用光场的强度关联信息来恢复物体图像的新型成像技术,因为其具有分辨率高、抗噪性好、造价低等优点而受到人们的广泛关注。本论文介绍了作者博士期间在鬼成像领域的主要研究工作以及相关背景知识,论文主体分为以下几个部分。第一部分为绪论。主要介绍了鬼成像的基本原理,从而得到鬼成像相比其他成像方法的优势;然后简述了鬼成像技术的研究进展,并讨论当前研究中存在的困难。我们根据鬼成像领域的热点和难点,分别
伴随着社会的发展,人们面对的信息数据越来越庞大和复杂,这给计算机的运算量和运算速度提出了更高的要求。因此,量子计算机的设计应运而生。量子计算机在相同数量的运算单元的情况下比传统计算机具有更大的运算量和更高的运算速度。但是,传统的量子比特极容易受外界干扰而导致运行出错,因此,量子计算机的发展受到了制约。而基于马约拉纳零能模的拓扑量子计算机由于其受体系的拓扑保护,对外界局部扰动有很强的抗干扰能力,从而
在过去三十年中,锂离子电池(LIBs,Li-ion batteries)的商业化彻底改变了世界。这主要由于其较高的能量密度和优异的循环性能,使研究人员能够开发利用对现代社会大有裨益的各种便携式电子设备。在帮助人类解决全球能源危机和缓解气候变化等方面,电池技术同样大有可为。为了人类可持续而又高质量的生活,使用可再生清洁能源(例如太阳能、风能、潮汐能等)替换化石燃料是将来发展的趋势。但是用于生产制造锂
得益于飞秒激光独有的时间特性,其在科研、工业加工、医疗等领域有着广泛的应用。这些应用也进一步推动着飞秒光源的发展,比如高次谐波及阿秒科学促进了少周期、高平均功率飞秒放大器的发展,精密计量及光学频率梳促进了高重频飞秒振荡器的发展,而强场物理实验比如激光尾波场加速,实验室天体物理和质子加速等则极大地推动着高峰值功率高对比度超强激光系统的发展。因此提升飞秒激光的时域参数比如脉冲宽度、重复频率、时间对比度
多铁性材料是指同时具有两种或两种以上铁性的材料,即材料同时具有铁电、铁磁或铁弹特性。在过去的十多年里,多铁性材料被广泛关注,并成为凝聚态物理和材料科学中的热点研究方向之一,这不仅仅是因为该类材料在实际应用中具有广阔的应用前景,还因为它蕴含着丰富的物理内涵。此外,多铁性材料的磁电耦合特性以及多场耦合效应也是被关注的一个重点。近年来,随着材料合成理论及技术的快速发展,金属-有机框架材料成为多铁性材料的
无论从理论还是从实验上,都已经在几何阻挫磁体中发现了奇异的量子态,如自旋冰、自旋液体等行为。但对于具有阻挫的量子磁体,想要在理论计算和实验测量之间实现直接且精准的对比,依然是一个非常大的挑战。最近,一种新的量子阻挫磁性材料Tm Mg Ga O4(TMGO)在实验室中被成功合成,该材料独特的几何结构和原子性质使得它的磁性可被三角格子上的量子伊辛模型来描述,这就给实现理论和实验之间的直接对比带来了机会
近二十年来,拓扑概念从数学分支引入到凝聚态物理领域,并扩展到固体能带理论,极大促进了凝聚态物理的发展。从量子霍尔效应的发现,到三维拓扑绝缘体的实验验证,再到如今拓扑半金属的飞速发展,各类新型的拓扑电子态正在逐渐被发现。拓扑材料具有丰富且新颖的电子态结构,对于自旋电子学和拓扑量子计算等领域有很大的应用前景。目前人们在层状拓扑材料中发现了许多新奇的物理现象,比如量子反常霍尔效应、轴子绝缘体态、高阶拓扑
高温超导体的超导电性可以通过多种非温度参量调节,如掺杂、磁场、压强等。在这个调控过程中,超导体的电子态和费米面结构经历了复杂的变化。为探索高温超导配对机制,厘清电子态和费米面结构的演化尤为重要。输运是一种方法相对简单但可以有效反映各种电子态信息的测量手段。例如,通过测量霍尔可以得到材料载流子浓度,测量热电势得到材料费米能,测量转角磁电阻研究电子态的对称性等。本文通过发展电热输运技术围绕两类高温超导
具有单原子层厚度的二维材料具备三维材料所不具备的新奇物理特性,逐渐成为材料研究的焦点之一。这些二维材料的出现不仅提供了探索极限条件下基础化学和物理的材料平台,同时有可能提供现有材料无法企及的全新机遇。在这些二维层状材料中,原子层通过较弱的Van der Waals相互作用结合在一起,可以形成单层或少层纳米结构。相邻原子层之间的Van der Waals相互作用使得不同材料的集成更加灵活,有助于人们
锂离子电池由于其优异的性能(高能量密度和长循环性能)被广泛应用于各个领域。正极、负极、电解液和隔膜是锂离子电池最重要的组成部分。其中隔膜起到了分离正负极,绝缘电子和导通锂离子的关键作用。目前商业化锂离子电池使用的隔膜均采用聚烯烃类隔膜,例如聚丙烯/聚乙烯(PP/PE),或者基于聚烯烃隔膜改性而来。这是由于聚烯烃类隔膜力学性能好,电化学性能、化学性能稳定,易于量产且价格低廉。但是由于聚烯烃PP/PE