论文部分内容阅读
随着现代制造业的迅速发展,高速度、高精度已成为现代运动控制追求的主要目标,开展高速高精运动控制的研究,对我国数字化装备制造业水平和竞争力的提升有着重大的意义。本文将着重对高速高精运动控制补偿及参数校准技术展开深入研究与实践。数控机床工作台采用直线电机和主轴旋转电机的复合运动,实现高速、高精、多自由度的运动性能,其控制为多刚体、多变量、强耦合的非线性系统控制。对此,本文根据高速高精运动控制系统的性能要求,设计了系统硬件体系和软件构架。其中,系统硬件采用基于PCI总线的IPC+8136卡结构,软件包括人机界面、任务调度、信息交换缓冲、插补处理及位置控制等;针对复杂的曲线曲面加工中存在的小线段“拐点”问题,采用柔性度较好的S型曲线加减速控制来避免运动过程中产生的冲击,建立小线段高速加工速度、加速度衔接模型,对连续小线段衔接处的拐点速度及加速度约束条件进行讨论,同时对小线段速度进行插补预处理,以满足高速高精运动控制的要求;结合机床工作台通用的运动控制结构,研究了对控制精度具有较大影响的外部扰动因素,并设计了适用于高速高精的伺服运动控制结构,对其中的参数校准技术进行深入研究。针对驱动系统的非理想因素,提出轨迹点前馈补偿校准技术,详细阐述前馈质量和前馈延时系数校准算法,推导出加速度前馈校准流程,极大的提高控制系统的高速响应特性;机床在运动过程中不可避免的存在谐振,通过计算系统传递函数,分析系统性能评价指标,设计Notch陷波滤波器参数,抑制机械谐振,提高加工精度;采用带二阶低通滤波的PID反馈控制器,基于积分误差最小的灵敏度约束方法对控制参数进行整定,抑制高频噪声,提高系统稳定性;研究伺服电机Cogging力/力矩产生机理,提出伺服电机齿槽推力波动的校准补偿,降低Cogging力/力矩对运动精度的影响。最后,搭建高速高精运动控制补偿及参数校准技术试验平台,进行了PID调节、Notch滤波和小线段S型曲线加减速插补算法验证试验。试验表明本文方法可行有效。