【摘 要】
:
惯性导航系统是一种不需要外部参考、也不向外辐射能量的自主式导航系统。陀螺仪是惯性导航系统中的核心传感器之一,目前使用的常规陀螺仪受限于小型化要求,精度难以提高,成为了限制惯性导航系统性能进一步提升的瓶颈。核磁共振陀螺仪因有着精度高、体积小、成本低且对加速度不敏感等优点,并正在向芯片级尺寸、战略级精度发展,已成为惯性导航领域新的研究热点。本文主要是对核磁共振陀螺仪中的三维磁场进行精密控制,并对核磁共
论文部分内容阅读
惯性导航系统是一种不需要外部参考、也不向外辐射能量的自主式导航系统。陀螺仪是惯性导航系统中的核心传感器之一,目前使用的常规陀螺仪受限于小型化要求,精度难以提高,成为了限制惯性导航系统性能进一步提升的瓶颈。核磁共振陀螺仪因有着精度高、体积小、成本低且对加速度不敏感等优点,并正在向芯片级尺寸、战略级精度发展,已成为惯性导航领域新的研究热点。本文主要是对核磁共振陀螺仪中的三维磁场进行精密控制,并对核磁共振陀螺仪的性能进行测量与评估。首先,对核磁共振陀螺仪的工作原理,具体包括惰性气体原子自旋极化、惰性气体原子核自旋进动、惰性气体原子核自旋磁共振和磁屏蔽等关键技术的原理进行介绍,指出磁场精密控制对于核磁共振陀螺仪精确测量载体装置角速度的意义。其次,通过核磁共振陀螺仪中内嵌三维原子磁强计的方案,介绍了三维原子磁强计测量三维磁场的原理,定量给出了三维磁场误差信号斜率与静磁场调制度、激励磁场大小等关键参数的关系及仿真结果。在对探测光失谐、泵浦光失谐、静磁场调制度、激励磁场大小以及静磁场大小等参数的优化后,获得了最佳工作条件,实现了三维原子磁强计的研制和三维磁场的闭环锁定。研制的三维原子磁强计,x、y方向灵敏度在100 Hz处优于200 f T/Hz1/2,z方向灵敏度在100 Hz处优于20 f T/Hz1/2。三维磁场闭环锁定后,6000s内Bx、By、Bz起伏分别不大于143 p T、147 p T和28 p T,Bx、By、Bz起伏的阿伦偏差长稳分别为2 p T@1000 s、1 p T@1000 s和200 f T@1000 s。再次,对核磁共振陀螺仪中各个噪声源进行了介绍,编写了基于Allan方差分析法的核磁共振陀螺仪噪声Lab VIEW拟合程序,初步预测了核磁共振陀螺仪的角度随机游走和零偏稳定性为0.028°/h1/2和1.2°/h。最后,介绍了自由感应衰减法测惰性气体原子弛豫的实验方案,探究了激励磁场大小与横向弛豫时间的关系。展示了本文所研制的核磁共振陀螺仪的陀螺效应,初步验证了核磁共振陀螺仪测量角速度的原理。
其他文献
良性特发性位置性眩晕(Benign Paroxysmal Positional Vertigo,BPPV)是临床上一种常见的周围性前庭疾病,其多发病于中老年人。BPPV的主要病理表现为前庭末梢器官病变,粘附在内耳球囊和椭圆囊斑上的碳酸钙盐结晶脱落。通常,BPPV患者头部位置改变时会产生强烈眩晕,同时出现眼颤症状。一直以来,关于BPPV的研究多从其发病诱因、诊断标准、治疗方法方面展开。然而长期外围输
草酸二甲酯(DMO)加氢制乙醇酸甲酯(MG)(DMO-to-MG)不仅有利于促进石化产业原料多元化,更有助于填补聚乙醇酸(PGA)市场空缺。磷化镍催化剂以其高MG选择性、效果稳定以及价格低廉的特点在DMO-to-MG逐步受到关注,但该催化体系目前主要存在以下问题:DMO无法深度转化或/和载体的酸性造成副反应的发生。因此,本文围绕温和条件下高效DMO-to-MG反应过程的构建,以Ni3P为活性组分、
级联生物催化反应是一类重要的化学转化,在生物信号转导和代谢途径中发挥重要作用。在生物系统中,复杂的生物催化级联过程发生在不同的细胞膜分隔的细胞器中,以防止出现干扰,从而产生效率极高的生物产品。在自然系统中模拟多酶催化级联反应,在受限结构中的空间组织在新兴的系统化学领域中得到越来越多的关注。为此,研究人员开发了多种生物微反应器,但它们仍难以满足模拟细胞反应途径的复杂性。在这项工作中,我们开发了金属有
茶树油作为植物精油,具有天然的抗菌、抗炎、抗病毒、抗肿瘤、抗氧化及提高机体免疫力等功效。丰岩乌骨鸡作为地方鸡种,更需要科学的养殖来促进当地经济的发展。所以本试验通过在日粮中添加茶树油,研究其对丰岩乌骨鸡雏鸡生长性能、免疫功能和肠道发育的影响,以期为茶树油在丰岩乌骨鸡日粮中的添加提供试验依据。本试验选用3日龄健康丰岩乌骨鸡1650只,随机分为5组。第一组为空白组,饲喂基础日粮;第二组为阳性组,在基础
Helmholtz方程是一个描述频域中波传播的偏微分方程。该方程在声学、电磁学和地震学等相关研究领域里有着广泛的应用。时谐情况下的声波传播,特定情况下的电磁波的散射,以及地震波扩散等过程在一定条件下都能够简化为该模型。因此Helmholtz方程的高效数值求解方法一直都是研究的热点。但是由于该模型具有一些特殊的性质,在对它进行模拟逼近时许多数值格式效果不佳。其主要原因是该模型往往建立在无界区域上,且
近年来,压缩感知(Compressed sensing)在信号处理、数学理论、统计学、计算机学科等领域得到了广泛关注。压缩感知中的稀疏信号重建是一类优化问题。原始-对偶牛顿优化算法是求解这类问题的一类重要方法。由于该方法需要用到二阶导数的信息,因此是二阶优化算法。二阶优化算法在收敛速度等许多方面具有优势,但也存在一个明显的缺点,即每步更新都需要求解一个线性方程组。本文利用循环矩阵构造了几种具有快速
自人工智能发展以来,深度学习算法特别是卷积神经网络CNN在计算、资源、功耗和成本均受限的嵌入式系统上的设计一直是一个比较热门的研究领域。CNN作为一种高性能的人工智能算法,可以广泛应用于人脸识别、行人检测和故障诊断等多个领域。它在嵌入式系统中的部署更是加速了这些应用的落地,使它们脱离服务器的束缚,真正服务于移动端和边缘端市场,具备很高的实用价值。CNN在嵌入式系统中的部署不仅涉及到了硬件设计更涉及
随着现实世界中数据量和数据结构复杂性的爆炸性增长,图数据在大范围应用中常被用于构建实体间的交互关系,其优越性也给人工智能、知识工程等领域带来重要的价值。作为高效管理和分析图数据的基础架构,图数据管理系统在工业和学术界都受到广泛关注。图数据管理系统主要有图数据库和图计算系统两类。近年来,涌现出越来越多具有突出性能表现的年轻图数据库和图计算系统。然而,目前图数据库和图计算系统领域内的系统性能评估工作大
伴随着人工智能领域的快速发展,日常生活中的方方面面都有了深度学习的身影。其在计算机视觉,自然语言处理,多智体强化学习等方面都发挥着至关重要的作用。由于深度学习网络参数众多,往往需要足够多的标注数据进行训练,才能避免过拟合问题,从而得到具有一定泛化能力的模型。然而受限于高昂的标注成本和数据稀缺等一系列问题,如何利用少量的标注数据进行深度学习逐渐引起了人们的高度关注。现有的小样本学习方法主要聚焦于图像
随着抗菌药物在畜禽养殖中的广泛、不合理使用,细菌耐药性日趋严重与复杂。不仅给畜禽养殖业带来造成巨大损失,加大了疾病防控难度,更威胁到人类生命安全及全球公共卫生。研究显示,通过获取耐药质粒是细菌产生耐药性的普遍机制,由质粒介导产生的耐药性能随耐药质粒的消除而逆转。本研究以从鹌鹑病料中分离得到的1株大肠杆菌作为靶细菌,通过组建的中药复方对其进行耐药质粒的消除,观察结果分析消除前后其耐药性的变化。研究的