论文部分内容阅读
胃肠道生物反应器是通过体外模拟人体胃肠道生理条件(如温度、动态p H、消化酶分泌、食物停留时间、流动混合和胃肠壁蠕动等)来研究食物消化的装备。可筛选大量物质,包括膳食成分、病原体,药物活性成分以及毒性或放射性化合物,评估它们如何改变胃肠环境,并且取样过程不受伦理约束。然而,与国外先进的设备相比,国内胃肠道反应器研制还处于起步阶段,难以达到模拟真实胃肠道消化过程的目标,限制了我国食品消化的跨学科研究。本文采用仿生学技术,模拟了胃肠道几何形态和内部结构,制备了仿生硅胶胃、小肠和大肠;利用内环境模拟技术,控制温度、p H、蠕动频率和内分泌等参数;通过发酵工程技术,建立了肠道微生物的高效率定植模型。在此基础上,集成肠道气体阵列传感器和智能控制系统,研制了仿生胃生物反应器、仿生小肠生物反应器和仿生大肠生物反应器。通过肠道微生物Akkermansiamuciniphila动态发酵培养、粪便体外定植培养、高抗性淀粉大米体外消化、抗性淀粉对粪便发酵影响和膳食脂肪酸对肠道气体分布影响等对反应器进行了逐步应用。本论文的主要研究成果如下:(1)仿生胃和小肠生物反应器研制及其体外消化研究研制了最多可以具有9个腔室的仿生胃和小肠组合生物反应器。在胃肠道几何形态方面,可分别模拟胃底、胃体、胃窦、十二指肠、空肠和回肠隔室反应器,隔室易于拆卸、方便灭菌,可独立或串联使用;在智能控制系统方面,开发了线下控制系统和线上云平台控制系统,可实现蠕动频率、分泌速率和p H等的检测和控制,历史数据导出和运行状态报警等功能;在模拟胃肠内部结构方面,分别制备了光滑型硅胶胃和硅胶小肠、褶皱型硅胶胃和绒毛型硅胶小肠,增大了肠道内的表面积,改变了食糜流变熵力,可促进食物破碎;在混合效果方面,反应器对牛顿流体和非牛顿流体都具有较好的混合效果,同等条件下优于传统釜式搅拌反应器;在胃内压方面,通过基本运动模式和强力运动模式控制,可实现胃的蠕动收缩阶段以及强力收缩阶段,收缩强度分别达到18-22 mm Hg、120-220 mm Hg;在破碎力方面,反应器最大破碎力大于0.72N,可以模拟固体食物在胃内的破碎功能;在p H控制方面,可根据食物的消化过程进行p H动态调节,还原了胃和小肠内酶活力动态调节;在排空速率方面,与已公开发布仔猪胃的排空相比,无显著性差异;在应用方面,将小麦粉、土豆粉、玉米粉、红薯粉、莲藕粉和大米粉在仿生胃和小肠反应器中模拟淀粉和蛋白质动态消化,在胃和小肠消化阶段均具有明显的差异。(2)仿生大肠生物反应器研制及其粪便定植研究研制了最多可以具有6个腔室的仿生大肠生物反应器,集成的线下控制系统和线上云平台智能控制系统,可有效控制反应器的发酵过程关键参数(蠕动频率、分泌速率、吸收速率、p H实时曲线等)。在大肠结构方面,制备了光滑型和褶皱型硅胶大肠;在混合效果方面,优于同等条件下的釜式搅拌反应器;在肠内压方面,模拟了低频和高频两种蠕动频率,肠内收缩强度分别达到60-90 mm Hg和100-150 mm Hg;在模拟吸收方面,可保持发酵液中短链脂肪酸在正常生理浓度内,使微生物生长不受抑制;在无菌验证方面,长时间运行后不易染菌,保证了实验的准确性;在p H控制方面,具有良好的酸碱平衡调节能力,维持大肠内环境,保证了微生物正常生长;在定植粪便微生物方面,微生物群落相似率大于85.17%,定植效果比较稳定。(3)仿生大肠生物反应器中Akkermansia muciniphila的生长和代谢研究基于研制的仿生大肠生物反应器,利用脑心浸出液肉汤(Brain heart infusion,BHI)培养基、猪粘蛋白(Porcine mucin,PM)培养基、人粘蛋白(Human mucin,PM)培养基、BHI+PM(BPM)培养基和BHI+HM(BHM)培养基对A.muciniphila进行体外动态发酵培养,并与传统静态培养对比。研究发现:在生物量方面,BHI动态培养的生物量为1.92 g·L-1,比静态培养提高了44.36%。利用HM动态培养,生物量进一步增加,达到2.89 g·L-1。在代谢产物方面,利用PM和HM动态培养,主要代谢产物为短链脂肪酸(乙酸和丁酸),而其他3种培养基,则有相当数量的支链脂肪酸(异丁酸和异戊酸)产生。在外观形态方面,利用HM动态培养,细胞直径达999nm,外膜蛋白浓度最高,达到26.26μg·mg-1。结果表明,培养基营养成分和培养条件可直接影响仿生大肠培养A.muciniphila的生物量、外膜蛋白浓度和厚度以及细胞直径。(4)高抗性淀粉大米的不同加工方式对体外消化和肠道菌群影响研究以高抗性淀粉大米为原料,通过蒸煮、粉碎、发酵和高温高压处理,加工成米饭、米浆、米糕和爆米花,分别对其体外消化和粪便微生物发酵过程进行分析。研究发现:4种食物在胃和小肠反应器中淀粉消化率均符合一级两相方程,其中米糕中抗性淀粉含量最高(11.98%)。在仿生大肠发酵过程中,未消化米糕与菊粉相比,发酵速度较慢,丁酸浓度提高67.85%,促进短链脂肪酸合成的普雷沃氏菌科(Prevotellaceae)和具有抗炎功能的粪杆菌属(Faecalibacterium)丰度增加,肠道微生物群失衡标志物变形杆菌门(Proteobacteria)和巨单胞菌属(Megamonas)丰度减少。结果表明,高抗性淀粉大米能调节肠道微生物群的发酵代谢产物和生态组成,有助于为糖尿病和肥胖患者的功能性食品设计提供参考。(5)膳食脂肪酸对肠道气体分布影响研究基于研制的仿生大肠生物反应器,通过肠道气体阵列传感器作为实时监测肠道气体为工具,配置基础培养基和膳食脂肪酸培养基作为营养基质,利用人体粪便微生物作为发酵菌株进行体外粪便发酵,分析基础营养和脂肪酸对肠道气体成分、浓度和体积影响变化,探讨膳食脂肪酸对肠道气体分布动力学。研究发现:粪便微生物利用膳食脂肪酸产生的气体成分主要为CO2、H2、H2S和VOC,其中CO2含量最高;可调控微生物发酵提高H2、H2S和VOC的浓度和体积。结果表明,膳食脂肪酸可刺激肠内H2S和VOC浓度升高,对高脂饮食造成肠道疾病的患病率增加提供一定参考,并可对降低肠内H2S和VOC浓度提供饮食指导。