论文部分内容阅读
C证券齐齐哈尔营业部理财业务营销策略研究
【出 处】
:
哈尔滨工业大学
【发表日期】
:
2020年01期
其他文献
有效地对网络中海量的文本信息加以利用,方便人们的生活,一直是自然语言处理领域重要的研究内容。作为文本信息结构化的第一步,实体识别的结果直接影响下游任务的效果,这也使其不断迎来各种挑战。其中,细粒度的实体识别旨在不同上下文语境中对实体进行更准确、更丰富的描述,这一点在实体类别数量和类别层次上提出了更高的要求,逐渐成为目前实体识别领域中的研究热点。同时由于人工标注的代价高昂,现有的数据集大多基于远程监
人类学习知识往往遵循由简单到复杂,由基础到尖端的“先修”顺序。错误的学习顺序不仅会加大学习难度,而且容易因为不理解学科概念,“望文生义”,误入歧途。然而这样正确高效学习的顺序往往很难获得,需要领域专家在完成相关方向的探索后进行手工标注。这意味着得到一门学科的“先修”顺序,不仅需要大量的专家投入时间精力,而且往往在时效上难以辅助对前沿研究方向的探索。本文以从学科相关文本中自动化抽取先修关系为切入点,
海量数据上的高效用项集挖掘是一类非常重要的查询,高效用项集挖掘是频繁项集挖掘在项存在权重时的一种扩展,本文处理高效用项集挖掘的两类研究:高效用项集挖掘和top-k高效用项集挖掘。高效用项集挖掘给定效用阈值,返回效用不小于阈值的所有项集,而top-k高效用项集挖掘给定项集的个数k,返回效用最大的k个项集,这两类研究根据不同的条件而定,都能为用户提供相应的决策支持。首先,本文研究海量数据上的高效用项集
社会的发展和技术的进步使得人机交互系统逐渐成为技术研究的热点,其中对话系统是一个重要的方面。而任务型对话又是对话系统中应用面最广的技术之一。随着对话系统应用面的推广,单个领域的对话系统已经不能满足实际需求了,多领域的对话系统及其相关技术的研究逐渐成为当前研究和应用的重点,而在此基础之上的模型跨语言能力的迁移泛化又是当前国际化不断推进带来的新的具有实际应用场景的研究方向。本文首先对现有的公开任务型对
随着自然语言处理技术的发展,自然语言处理的应用也越来越广泛,比如在聊天机器人、智能搜索、智能推荐等应用中,都运用上了自然语言处理的技术。此外,国家之间的交流也越来越频繁,人们对于各种语言的深层语义理解的需求也越来越大。语义依存图分析任务便是针对该需求所提出的任务之一。语义依存图以图的形式将语义信息进行了有序地组合,通过依存弧和语义标签定义了若干对语义单元,从而可以直接回答何时(when)、何地(w
暴力检测在音视频检测领域具有十分重要的地位,有着重大的研究意义。在安防领域快速检测出暴力行为,有利于减少人员伤害。在体育竞技方面检测出暴力行为有助于比赛公平性。但是随着互联网和流媒体的发展,人工检测无法满足速度的要求,这就需要一种更好的方法来完成暴力检测。当下大多数暴力检测主要在视频方面,检测种类单一,忽略了其他模态的暴力检测,导致暴力检测率不高,因此需要一种结合多种模态特征的暴力检测技术。首先,
本文的研究课题是《面向流行病预警的声音数据聚类方法研究》,本文的主要研究目的是希望通过人群级别的咳嗽声音数据的搜集与分析处理,预警某一场所呼吸道流行病爆发的趋势。具体实现场景为,于某一个人员密集场所(如实验室,教室)布置麦克风,采集到带有不同人的咳嗽的音频信号,通过音频聚类的方法精确数出一段音频信号的咳嗽人数,通过这个指标来预警呼吸道流行病爆发的趋势。本文主要研究内容为基于研究目的构建的系统,系统