论文部分内容阅读
增压柴油机能够有效提高柴油机的功率密度,改善柴油机的经济性和排放,但是受限于增压器的性能,增压柴油机不能在全工况范围内保持良好的性能,特别是在低负荷时,功率下降,排温增高,排放性能恶化。因此利用变几何压气机改善增压柴油机低负荷的性能就成为了一个重要的研究方向。
本文主要完成了可变扩压器离心压气机的设计和性能分析,主要包括变几何压气机流场分析、变几何压气机设计及变几何压气机性能试验、变几何压气机的稳态性能和瞬态性能建模,采用仿真的方法研究了可变几何压气机对增压柴油机性能的影响,本文研究的主要内容如下:
(1)利用CFX流体软件分析了变几何压气机结构参数对压气机流场和性能的影响。建立了变几何压气机的流体仿真模型,分析了不同扩压器叶片入口角度和不同的半径比对压气机流场和性能的影响。结果表明随着扩压器叶片角度的增大,压气机的喘振边界向左移动,压气机的流量范围从1.4kg/s~2.8kg/s扩展到0.2kg/s~2.8kg/s,流量范围扩大了85.7%,压气机的最高效率随着扩压器叶片角度增大而降低。研究发现在低速喘振边界时,扩压器的尾缘会出现脱离涡,而随着扩压器叶片角度的增大,脱离涡会逐渐向上游发展,最终蔓延到整个叶轮流场。进一步分析发现这种涡流在叶轮中的发展是由于大角度下叶轮出口气体回流引起的。同时研究分析了不同入口半径比对压气机流场和性能的影响,发现随着入口半径比的增大,压气机无叶扩压段的压力上升,流速下降,形成高压低速区,容易产生涡流,影响流场的均匀分布,导致压气机效率下降。对比了低速、中速和高速状态下不同半径比的静压恢复系数和总压损失系数,提出了基于转速权重的有效静压恢复系数和有效总压损失系数,对比不同扩压器叶片入口角度的有效静压恢复系数和有效总压损失系数,发现入口半径比为1.12的有效静压恢复系数最高,有效总压损失系数最小,因此将设计的可变几何压气机的扩压器入口半径比设定为1.12。
(2)设计并改造了压气机的可变扩压器结构,对其进行了结构强度的校核,建立了变几何压气机试验台架,完成了变几何压气机的稳态性能和瞬态性能的试验。针对原压气机的结构,选择扩压器叶片角度可变作为可变几何压气机的实现方式,设计了摇臂旋转盘机构实现了扩压器叶片的同步旋转,并利用齿轮副实现了扩压器叶片角度的精密控制,将其安装在扩压器底盘的背面,避免了对扩压器流场的影响;利用外部的空间安装步进电机和齿轮副实现减速和扭矩的传输功能。对设计的结构进行了结构强度校核和变形分析,结构的最小安全系数为1.48,最大的变形为0.35mm,满足强度要求。利用大型压缩机作为动力源,采用电磁控制阀控制变几何压气机的进出口压力和流量,并安装了稳态和瞬态数据记录设备,建立了变几何压气机试验台。根据建模的要求选择稳态性能和瞬态性能试验工况点,在试验台上完成了变几何压气机的稳态性能试验和瞬态性能试验。
(3)建立了变几何压气机的稳态性能和瞬态性能预测模型。采用椭圆方程和偏最小二乘法对变几何压气机的稳态性能进行拟合预测,利用椭圆方程将不同扩压器角度下的不同转速的压气机特性曲线转换成不相关的独立参数,利用偏最小二乘法建立各独立参数与压气机转速和扩压器叶片角度的非线性模型。结果显示压比-流量特性图和效率-流量特性图最大的拟合误差均为2%,在转速为0.625时压比的最大预测误差为1.6%,效率的预测误差为4.4%;在固定角度下,压比和效率预测能力相差无几,两者的最大预测误差分别为3%和2.5%。对试验获得的瞬态性能曲线进行了分析,定义了表达瞬态过程的性能参数,并利用性能参数组合的数学表达式给出了变几何压气机的瞬态性能曲线;对性能参数与控制参数的相关性进行了分析,建立了性能参数与控制参数的数学表达式,并利用多项式和基于偏最小二乘法建立了变几何压气机的瞬态性能模型;对模型的拟合性能和预测性能进行了检验,验证了模型的有效性。结果表明所建立的稳态性能预测模型显示了良好的预测能力,其预测精度也远远优于常规的查表法和神经网络法;所建立的瞬态性能预测模型不仅能够有效地拟合已知的变几何压气机的瞬态性能,而且还能够预测变几何压气机瞬态性能的变化,显示了良好的定性预测和定量预测能力,能够满足数学建模的精度要求。
(4)建立了可变扩压器离心压气机与柴油机的联合仿真模型,研究了变几何压气机对柴油机性能的影响。利用simulink平台建立了变几何压气机和柴油的联合仿真平台,研究了变几何压气机对推进特性、负荷特性和高背压工况下柴油机性能的影响。结果显示采用变几何压气机后,柴油机的推进特性和负荷特性均有所改善,油耗降低,最多降低了4.58%,高背压时柴油机的功率也得到有效恢复,功率恢复系数最多增加了96%。在推进特性下,随着负荷降低,最佳的扩压器叶片入口角度增加;在高背压下,随着背压增加,最佳的扩压器入口角度增加。
本文主要完成了可变扩压器离心压气机的设计和性能分析,主要包括变几何压气机流场分析、变几何压气机设计及变几何压气机性能试验、变几何压气机的稳态性能和瞬态性能建模,采用仿真的方法研究了可变几何压气机对增压柴油机性能的影响,本文研究的主要内容如下:
(1)利用CFX流体软件分析了变几何压气机结构参数对压气机流场和性能的影响。建立了变几何压气机的流体仿真模型,分析了不同扩压器叶片入口角度和不同的半径比对压气机流场和性能的影响。结果表明随着扩压器叶片角度的增大,压气机的喘振边界向左移动,压气机的流量范围从1.4kg/s~2.8kg/s扩展到0.2kg/s~2.8kg/s,流量范围扩大了85.7%,压气机的最高效率随着扩压器叶片角度增大而降低。研究发现在低速喘振边界时,扩压器的尾缘会出现脱离涡,而随着扩压器叶片角度的增大,脱离涡会逐渐向上游发展,最终蔓延到整个叶轮流场。进一步分析发现这种涡流在叶轮中的发展是由于大角度下叶轮出口气体回流引起的。同时研究分析了不同入口半径比对压气机流场和性能的影响,发现随着入口半径比的增大,压气机无叶扩压段的压力上升,流速下降,形成高压低速区,容易产生涡流,影响流场的均匀分布,导致压气机效率下降。对比了低速、中速和高速状态下不同半径比的静压恢复系数和总压损失系数,提出了基于转速权重的有效静压恢复系数和有效总压损失系数,对比不同扩压器叶片入口角度的有效静压恢复系数和有效总压损失系数,发现入口半径比为1.12的有效静压恢复系数最高,有效总压损失系数最小,因此将设计的可变几何压气机的扩压器入口半径比设定为1.12。
(2)设计并改造了压气机的可变扩压器结构,对其进行了结构强度的校核,建立了变几何压气机试验台架,完成了变几何压气机的稳态性能和瞬态性能的试验。针对原压气机的结构,选择扩压器叶片角度可变作为可变几何压气机的实现方式,设计了摇臂旋转盘机构实现了扩压器叶片的同步旋转,并利用齿轮副实现了扩压器叶片角度的精密控制,将其安装在扩压器底盘的背面,避免了对扩压器流场的影响;利用外部的空间安装步进电机和齿轮副实现减速和扭矩的传输功能。对设计的结构进行了结构强度校核和变形分析,结构的最小安全系数为1.48,最大的变形为0.35mm,满足强度要求。利用大型压缩机作为动力源,采用电磁控制阀控制变几何压气机的进出口压力和流量,并安装了稳态和瞬态数据记录设备,建立了变几何压气机试验台。根据建模的要求选择稳态性能和瞬态性能试验工况点,在试验台上完成了变几何压气机的稳态性能试验和瞬态性能试验。
(3)建立了变几何压气机的稳态性能和瞬态性能预测模型。采用椭圆方程和偏最小二乘法对变几何压气机的稳态性能进行拟合预测,利用椭圆方程将不同扩压器角度下的不同转速的压气机特性曲线转换成不相关的独立参数,利用偏最小二乘法建立各独立参数与压气机转速和扩压器叶片角度的非线性模型。结果显示压比-流量特性图和效率-流量特性图最大的拟合误差均为2%,在转速为0.625时压比的最大预测误差为1.6%,效率的预测误差为4.4%;在固定角度下,压比和效率预测能力相差无几,两者的最大预测误差分别为3%和2.5%。对试验获得的瞬态性能曲线进行了分析,定义了表达瞬态过程的性能参数,并利用性能参数组合的数学表达式给出了变几何压气机的瞬态性能曲线;对性能参数与控制参数的相关性进行了分析,建立了性能参数与控制参数的数学表达式,并利用多项式和基于偏最小二乘法建立了变几何压气机的瞬态性能模型;对模型的拟合性能和预测性能进行了检验,验证了模型的有效性。结果表明所建立的稳态性能预测模型显示了良好的预测能力,其预测精度也远远优于常规的查表法和神经网络法;所建立的瞬态性能预测模型不仅能够有效地拟合已知的变几何压气机的瞬态性能,而且还能够预测变几何压气机瞬态性能的变化,显示了良好的定性预测和定量预测能力,能够满足数学建模的精度要求。
(4)建立了可变扩压器离心压气机与柴油机的联合仿真模型,研究了变几何压气机对柴油机性能的影响。利用simulink平台建立了变几何压气机和柴油的联合仿真平台,研究了变几何压气机对推进特性、负荷特性和高背压工况下柴油机性能的影响。结果显示采用变几何压气机后,柴油机的推进特性和负荷特性均有所改善,油耗降低,最多降低了4.58%,高背压时柴油机的功率也得到有效恢复,功率恢复系数最多增加了96%。在推进特性下,随着负荷降低,最佳的扩压器叶片入口角度增加;在高背压下,随着背压增加,最佳的扩压器入口角度增加。