基于鱼眼相机模型的VI-SLAM系统应用研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:caizilovenvfei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着信息技术的高速发展,无人智能系统和移动智能机器人已经逐步走入到了人类日常生活中,并在混合现实、应急救援和无人驾驶等任务中发挥着重要作用,其中的关键技术即时定位与地图构建(Simultaneous Localization And Mapping,SLAM)引起了研究者们的广泛关注。视觉SLAM系统以其成本低和容易部署的优势,用于服务人类日常生活的可能性更大,逐渐成为了SLAM系统中的一个研究热点。然而,视觉SLAM系统在一些应用场景中还存在问题,如:基于针孔相机模型和去畸变处理的视觉SLAM系统会引起相机原来的有效视角变小,两帧图片间的重叠区域变窄,并且系统在环境中运动的视场角变化过大时,会造成系统鲁棒性变差,甚至失效;纯视觉SLAM系统中由于只含有相机作为传感器,在环境视觉信息薄弱场景下,会引起系统无法检测到充足有效的视觉特征,无法在两帧图像间进行特征匹配和位姿恢复,进而造成系统无法工作。本文聚焦于解决系统中去畸变造成的有效视角变小和视觉信息不足的两个问题,开展的主要研究内容和做出的主要贡献如下:针对第一个问题,本文基于鱼眼相机模型能保持相机原有视角尺寸的特性,替代传统针孔相机模型,然后推导鱼眼相机模型在SLAM系统中的各类雅可比矩阵,并融合到前后端非线性优化的图优化框架中。另外,结合视觉系统的尺度问题,本文采用双目相机来确保系统的尺度确定性,从而在单目系统基础上,设计双目非去畸变特征匹配的系统算法流程,为视觉系统提供确定尺度和有效视角不变的特性,来提高该问题下系统的鲁棒性。针对第二个问题,本文基于惯性测量单元IMU(Inertial Measurement Unit)传感器,采用多传感器紧耦合的研究方案。运用IMU自身就能估计出系统位姿的特性,并利用预积分机制同步IMU和相机的频率,在后端构造包括单目、双目和惯性测量值的统一目标函数,通过非线性优化算法来优化目标函数和估计系统的位姿状态。IMU为视觉信息薄弱时提供可靠的IMU位姿信息来辅助系统,从而确保系统在此问题下的鲁棒性。为了让SLAM系统能够一块处理上述两类问题,本文结合上述两套研究方案,构建了一套融合鱼眼相机模型、双目相机和IMU传感器的VI-SLAM系统,并最终搭建了一套硬件系统来验证实景下融合系统研究方案的可行性。
其他文献
目标检测是自动驾驶系统的重要环节,基于机器学习的目标检测方法已经取得显著效果。但在自动驾驶环境下,无法提供高储存资源和计算资源。传统的视频目标检测算法网络结构复杂,计算硬件要求较高,并不适用于自动驾驶环境。于是设计一种实时性高,又能保证准确性的视频目标检测算法有其必要性以及实用价值。从检测速度提高方面对视频目标检测算法进行如下改进:针对自动驾驶环境中计算资源低的问题,提出面向图像的轻量化检测网络。
第五代移动通信时代(the 5th Generation,5G)已经到来,接入无线网络的移动终端设备的数目呈指数式增长。与此同时,用户的需求已经不仅仅局限于互发短信和语音通话等服务,社交网络以及多媒体等服务也变成了用户必需的通信服务。正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)以其固有的对抗多径衰落的能力、灵活的用户接入以及较高
随着无线设备和无线服务的爆炸式增长,现有的无线射频频谱资源稀缺,无法满足人们对高速率的需求。可见光通信(Visible Light Communication,VLC)具有丰富可见光频谱资源,利用发光二极管(Light Emitting Diode,LED)来发送无线数据,是未来有潜力技术之一。但是,LED限制带宽会引起码间干扰,从而降低误码率性能以及限制数据传输速率。直流偏置光正交频分复用(Di
无人机由于具有便携性、高效性和安全性,被广泛应用于目标搜索领域。但是由于单无人机存在续航有限、灵活性差等缺点,现广泛使用多无人机进行集群式搜索。集群搜索有着更高的搜索效率,也面临着更多的挑战。如何针对不同的场景具体地设计无人机集群的分布式协同搜索算法是一个亟待解决的问题。本文围绕着基于群智的分布式协同控制的主题,针对无人机集群对未知环境中的静态目标的搜索问题开展分布式搜索算法的设计和验证,突破了传
分布式多智能体集群运动控制技术,是未来大规模无人机集群搜索、大规模自主编队表演技术、超远距无人机集群中继通信等一系列应用场景的技术基石。如何让分布式集群拥有超强避障能力,更是现有研究中的重点。现有的比较成熟的方案是以建模生物体集群运动为核心出发的,通过将障碍物比作虚拟的智能体来实现避障,这种方案又被称为Flocking算法。但是这种方案只能适合于凸类型和部分非凸类型的障碍物。针对狭窄型的只能允许极
移动边缘计算(Moblie edge computing,MEC)在处理一些新型的计算密集型或时延敏感型的任务时已经展现了其独有的优势。通过计算卸载及服务迁移,用户终端所产生的任务可以由边缘设备进行处理,从而打破了终端设备有限的资源与能量带来的限制。然而,MEC系统的异构性、无线网络环境的动态性以及终端用户的移动性等均给计算卸载及服务迁移策略的设计带来了很大的挑战。本文旨在通过对异构边缘网络中计算
随着无人机技术的不断发展,其所具有的低成本、高灵活性等特点为解决各种实际问题提供了更多的可能性,在环境探测,农业植保等领域都得到了广泛应用。本文考虑一种未知环境探索情形,在全球定位系统受限的情况下,同时定位和建图(Simultaneous Localization And Mapping,SLAM)算法提供了无人机主动飞行的核心技术。在大规模复杂环境中,单架无人机由于其性能和探索范围局限性,不能快
感知技术在交通、军事、农业等领域具备极其重要的使用价值,且在低时延、大容量、高速率的情境下,越来越多的应用场景对环境感知提出越来越高的要求。在感知层面中,目标的检测和跟踪具有举足轻重的地位,其相关的技术成果已渗透到人们生活的方方面面。而当探测环境比较复杂时,使用传统的感知手段和方法来完成目标的检测与跟踪从过程上分析比较复杂,且由于目标具有一定的空间结构,以往的处理方法经常忽略目标的多散射点模型,因
信号的检测与识别被广泛应用于频谱监测、军事电子对抗、信号解密、干扰探测等领域。随着通信环境的日益复杂,传统的单信号识别技术无法应用于电磁干扰严重的信号混叠场景。如何消除干扰、频偏、相偏、衰落等带来的影响,识别出混叠信号中的未知信号源是一个亟待解决的难题。传统的盲信号识别算法识别精度依赖于盲源分离效果,然而复杂通信环境下的非充分稀疏混合信号难以分离,且无法适应环境的动态变化。本文围绕基于机器学习的盲
现代社会亟需新一代的移动通信技术,以满足用户对低时延、广覆盖、高速率的需求。与常用的半双工相比,全双工提高了日渐稀缺的频谱资源的利用率,近年来得到了广泛研究。然而由于全双工在自干扰消除能力不佳时性能不及半双工,混合双工,即全双工和半双工之间进行选择切换成为了研究的热点方向。协作通信是一种将多个无线设备通过协作协议统一控制起来,取得比起独立工作更好性能的通信方式。多个彼此进行协作通信的中继被称为协作