论文部分内容阅读
在大数据、云计算、物联网、高清视频等新一代信息技术日新月异的今天,“云生活”成为一种新潮的生活方式,庞大的数据吞吐量以及数据传输速率,对未来通信行业提出了更高的要求。集成光子器件得益于尺寸小、耗电少、成本低、集成度高等优势,无论是在通信、传感、计算乃至人工智能方面都有非常广泛的应用。在众多实现集成光子器件的材料中,铌酸锂凭借其良好的电光效应、声光效应、压电效应、双折射特性以及非线性效应,享有“光学硅”的美誉,在集成光子学领域占据着十分重要的地位。铌酸锂薄膜(LNOI)的问世,为铌酸锂行业的发展带来了技术革新,LNOI不但保留了铌酸锂材料的优良特性,而且由于铌酸锂与二氧化硅材料之间具有较高的折射率差(0.7),使得基于LNOI的光波导器件无论是在器件的性能方面还是在集成度方面都有非常大的提升,因此吸引了大量的研究者。近年来,基于LNOI的光波导器件层出不穷,目前报道的主要有低损耗光波导、电光调制器、声光调制器、谐振腔、光子晶体以及非线性光学器件等。LNOI已经成功实现了与Si、SiN等平台的混合集成,能够综合各种材料的优势于一身。LNOI将来能够在大规模光子集成电路、集成微波光子系统等领域发挥重要作用,成为未来光子集成电路广泛应用的平台指日可待。但是目前LNOI仍然处于快速发展的阶段,要使LNOI成为一个具有吸引力和竞争力的集成光学平台,更多的LNOI光波导器件有待研究,尤其是基于LNOI的偏振控制器件以及光延迟线等方面,目前的研究还有所欠缺。微波光子技术,采用光子技术实现高速微波信号的产生、处理、传输与测量,自提出以来就吸引着大量的光子学以及微波领域的研究者,特别是能够克服传统滤波器电子瓶颈的微波光子滤波器,更是其中的研究热点。集成光子技术的飞速发展,将微波光子滤波器推向了全新的发展高度,不但为微波光子滤波器减小了体积、降低了成本和复杂度,同时还带来了包括带宽、光谱分辨率、噪声性能、可调谐与可重构性方面性能的大幅度提高。此外,单片集成以及混合材料异质集成技术的重大研究进展,有助于实现单片集成的微波光子滤波器。铌酸锂材料卓越的电光效应,使得其在微波光子系统中具有独一无二的优势,因此研究基于LNOI的光波导器件特别是偏振控制器件以及光延迟线,不但能够填补LNOI平台在这一方面的研究空缺,开拓LNOI集成光子平台的发展前景,还能够为未来基于LNOI的高集成度微波光子滤波器以及微波光子系统探索道路,并提供可靠的理论依据与研究基础。本文基于LNOI,提出了定向耦合型的偏振分束器以及波导光栅可调谐光延迟线,并基于上述两种器件提出了一种可调谐陷波微波光子滤波器和一种可调谐的带通微波光子滤波器。本文的主要研究内容及创新点归纳如下:(1)基于LNOI结构,充分利用铌酸锂材料自身的双折射特性,提出一种结构紧凑的定向耦合型偏振分束器。从LNOI条形波导的有效折射率分析入手,对器件进行了理论分析和建模仿真,以器件长度和消光比作为优化器件性能的评价指标,实现器件最优化设计。数值结果表明,当TE(TM)模式输入时,偏振分束器的消光比能够达到38 dB(38.8 dB),工作带宽135 nm(50 nm),对波导宽度的工艺容差>100 nm(40.5 nm),对铌酸锂薄膜厚度的工艺容差约为160 nm。(2)基于LNOI结构,提出一种波导光栅可调谐延迟线,该延迟线由均匀波导布拉格光栅与分布于光栅两侧的电极阵列组成,利用铌酸锂良好的电光效应,突破了光栅延迟线的传统工作模式,通过改变外加电压的施加位置即可实现时延的主动式可调谐,通过不同的外加电压即可实现延迟线的灵活可重构。经过数值仿真与分析,光栅的最大时延可达为310 ps,可调谐范围达300 ps,调谐精度10ps,中心反射波长的调谐范围为1.66nm。(3)针对单光源微波光子滤波器偏振敏感问题提出一种基于LNOI偏振分束器和波导光栅延迟线的可调谐陷波微波光子滤波器,并且进行了建模仿真与实验验证,仿真(实验)结果表明,滤波器的陷波深度能够达到48.72 dB(22.54 dB),同时测试了滤波器对干扰信号的抑制作用以及中心频率调谐性能,其中心频率调谐范围约为1.57 GHz。该滤波器具有结构简单、功耗低、响应速度快等优点。(4)基于LNOI波导光栅延迟线提出一种可调谐的带通微波光子滤波器,利用阵列波导光栅(AWG)对宽谱光源进行切割实现多抽头微波光子滤波器,采用相位调制转强度调制实现带通滤波,由于波导光栅可调谐延迟线的低功耗、多波长主动调谐的优势,只需改变延迟线的加电电压以及加电位置即可实现滤波器通带的灵活调谐。