论文部分内容阅读
节能减排是贯穿整个工业发展进程的主要目标。当前能源与环境问题日益严重,消耗大量能源的制冷领域做出改变迫在眉睫。目前压缩式制冷得到广泛使用,但与之相比,吸收式制冷是一种更加顺应低碳经济和可持续发展趋势的制冷方式。它可以利用低品位热源制取冷量。然而,作为吸收式制冷系统的核心部件,传统吸收器的体积和重量都很大,限制了其在微小型制冷场合的应用。此外,因其内部为自由水平面,也不适用于汽车、船舶等经常摇动的场合。近年来,应用膜蒸馏技术的疏水膜式吸收器的出现有望解决上述问题。研究表明:疏水膜式吸收器的吸收率高于传统吸收器,但对于其内部的热质传递机理以及结构与性能的研究还有许多工作要做。本研究以疏水膜式板框吸收器为研究对象,将水蒸气的跨膜传输与吸收过程耦合,建立了一个全新的数值模型,通过仿真的方法分析了其内部的热质传递机理并讨论了几何和操作参数对其性能的影响。首先对疏水膜式吸收器中膜的相关特性进行了介绍,膜的材料选定为PTFE,分析确定了膜内水蒸气的传递机理,同时确定了溴化锂水溶液的相关物性方程。通过合理的假设,建立了膜区域、溶液微通道区域和冷却水区域的数学模型。之后基于COMSOL平台建立了疏水膜式吸收器的数值模型,分析了其内部的热质传递过程和机理,发现了吸收过程中膜内和溶液通道内的温度和浓度的变化情况。此外,本研究数值模型中膜和冷却水通道的加入使溶液-膜界面的温度和浓度变化较为缓和,溶液通道出口附近的吸收率趋于稳定。疏水膜式板框吸收器平均吸收率达到了 0.00365 kg/m2.s,远大于吸收率在0.0015-0.0027 kg/m2.s之间的传统吸收器。为探究几何和操作参数的变化对疏水膜式板框吸收器性能的影响规律,以平均吸收率和压降为性能评价指标,基于这两组变量合理设计了多组参数组合并进行了模拟分析。结果表明:低溶液通道高度具有高平均吸收率和高压降;溶液通道长度的增加几乎不会影响平均吸收率,但会使压降线性升高。以高吸收率、低压降为准则,溶液通道高度应尽量低但不宜过低,通道长度应尽量短但不宜过短。在满足机械强度和疏水性等前提下,膜要尽可能薄,孔径和孔隙率要尽可能大。增加溶液流速虽然使平均吸收率升高,但也导致了较高的压降,故溶液流速应尽量大但不宜过大。溶液浓度和水蒸气温度的增加使平均吸收率升高,溶液入口温度的增加则使其降低。此外,同一参数在不同溶液通道高度下对平均吸收率的影响程度也不相同。以上各参数的变化对吸收器性能的影响规律为溴化锂吸收制冷系统疏水膜式板框吸收器的设计和应用提供了一定的参考和指导。