压电纤维复合材料粘结层影响及其复合结构优化

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:tinacat
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
压电纤维复合材料(Macro Fiber Composite,MFC)是一种压电纤维与高分子聚合物交替平行排列并由叉指电极封装得到的多层复合材料,在航空航天、机械船舶等领域有着广泛的应用前景。MFC在封装与使役过程中,叉指电极与压电复合层之间以及MFC与主体结构之间都难以避免地引入一层封装层与粘结层,封装层和粘结层对MFC的电学性能与力学性能有着重要的影响。因此,本文研究了封装层与粘结层结构与性能参数分别对MFC和压电复合结构中电场分布及应力应变传递的影响规律,同时探究了在外场作用下二者对MFC及其复合结构的驱动性能与传感性能影响,提出了一种新型压电复合结构设计方案并对其进行了性能测试,本论文的研究工作与结论如下:(1)构建MFC等效单位体积元并用有限元法研究了MFC结构中封装层尺寸和性能参数对MFC中压电纤维内部电场、应力分布以及应变性能的影响。仿真模拟结果表明,在恒定外加电场条件下,减小封装层厚度以及增大其介电常数,能有效地减小封装层的分压现象及提高压电纤维上有效电场加载,从而提高MFC的铁电性能。因此,对MFC结构中封装层合理调控能表现出优良性能。(2)仿真模拟分析了压电复合悬臂梁结构中粘结层厚度和弹性模量对悬臂梁内应力分布、驱动和传感性能的影响。仿真模拟结果表明,在恒定外加电场下,减小粘结层厚度以及增大其弹性模量,有利于MFC与悬臂梁之间力的传递,提高MFC的驱动传感性能。当粘结层弹性模量超过基板弹性模量时,粘结层刚度增大难以发生形变,且MFC的形变受到抑制,悬臂梁自由端位移及输出电压减小,仿真及实验结果为MFC在使役过程中粘结层的选择提供了参考。(3)设计制备了新型压电复合结构,将压电纤维复合层嵌入玻璃纤维增强复合材料中形成复合悬臂梁结构,对复合结构的驱动与传感性能进行了研究。研究表明,嵌入式压电复合悬臂梁在外电场下,随着外加电场强度增大,悬臂梁自由端逐渐增大,但增长幅值变化不明显。在1 g加速度的动态载荷下,悬臂梁内部压电复合层对振动与变形响应灵敏,谐振频率为80 Hz下,其输出电信号为1.41 V。结果表明,新型压电复合结构适用于在低频振动下的传感响应。
其他文献
新能源汽车、智能电网、航空航天等行业迅速发展,其领域内不断高度微型化、集成化的电子设备为功率电子器件的封装提出了低温互连,高温服役的要求。传统锡基焊料不耐350℃以上的高温,而常见的高温焊料则由于熔点过高极易造成元器件的损坏,现在研究的新型连接工艺如瞬时液相烧结(TLPs)及纳米颗粒烧结(NPs)等方式存在连接层孔洞较多,烧结压力过大,生成脆硬性的金属间化合物(IMCs)影响连接强度等缺点,因此亟
学位
轴承作为机器中的关键零件,在汽车、轮船、重型装备和航空航天等领域广泛运用,是机械部件转动不可或缺的零件。轴承中的流线组织分布对轴承的使用性能有重要影响。本课题研究了GCr15轴承钢中流线组织在成形制造过程中的演变特性及对机械性能的影响。首先对GCr15轴承钢热轧态流线组织进行了微观分析,揭示热轧态流线组织的形貌特征。对热轧态GCr15轴承钢进行球化退火处理,分析退火态GCr15轴承钢中流线组织的微
学位
随着电力电子器件的小型化和集成化,不断提升的工作温度使其功率模块封装需经受更严苛的考验,亟需一种耐高温封装工艺。近年来,瞬时液相烧结连接技术(TLPS)凭借较低的连接温度和辅助压力,较高的强度和优异的耐高温性能,具有在电力电子封装应用的潜力。瞬时液相烧结连接选用熔点相差较大的金属粉末作为连接材料,在连接过程中低熔点金属(Sn和In)熔化并与高熔点金属(Au、Ag、Ni和Cu等)反应生成高熔点的金属
学位
催化层是质子交换膜燃料电池(PEMFC)的核心器件。氢氧化反应(HOR)和氧还原反应(ORR)分别在阳极和阴极催化层中发生。因此,催化层的优化和电催化剂的设计对PEMFC起着至关重要的作用。PEMFC动态工况运行过程中出现的反极现象能在短时间内使电池的催化层结构造成致命的衰退,从而大大降低燃料电池的寿命,因此需要对反极过程中催化层的微观结构进行深入研究。而对于PEMFC催化剂而言,其目的是完全消除
学位
随着人们对食品和药品等相关安全问题的日益关注,使用相变材料(PCM)的蓄冷技术已成为研究的热点。相变材料作为蓄冷技术的核心,可充当能量储存的中介,弥补能量供需在时间和空间上的差异,实现能量的充分利用。目前,低温相变材料的研究主要集中在用于空调和建筑等相变温度在0℃至室温的相变材料,而对于相变温度为0℃以下的冷链用相变材料尚存较大空缺。故本文针对微冻冷藏(0~-7℃)和轻度冷冻(-10~-18℃)两
学位
快速准确的检测自然环境和生活用水中的硫酸根离子含量对于环境检测和人类身体健康都有着重要意义。硫酸根离子及其盐类作为肥料、添加剂等在人类农业、医药、建筑业和生活中发挥着重要作用,但是过高的硫酸根离子含量会导致许多问题,例如引起人体肠胃功能紊乱导致腹泻,土壤环境酸化和对混凝土结构的侵蚀劣化作用。因此,设计并制造一种硫酸根离子传感器,对环境中硫酸根离子进行快速、实时、稳定的检测是亟待研究的问题。随着传感
学位
铜、铝异种金属的连接不仅可以实现接头轻量化,还能缓解储铜压力、解决铝的产能过剩问题,具有广阔的应用前景。然而,铝表面致密的氧化膜阻碍了铜铝间形成有效的连接,导致无法得到牢固的钎焊接头。结合半固态钎焊的优势和电磁成形的特点,课题组提出了磁脉冲辅助半固态无钎剂钎焊铜铝管的新工艺,以避免常规钎焊因使用钎剂而带来的气孔缺陷、接头耐腐蚀性下降等问题。半固态钎料的流变性能是分析钎焊过程、评估接头性能的重要依据
学位
Si3N4/SiC被认为是一种优秀的复相陶瓷,可以具有许多优良的特性,如良好韧性,高温稳定性,耐磨性与耐腐蚀性等,但材料实际上硬度和韧性难以同时统一的问题仍限制着这种复合材料的广泛应用。为了更好的集成Si3N4、SiC各自优良的性能于Si3N4/SiC复合材料中,本论文提出梯度组成复合结构思路,探索了Si3N4/SiC梯度复合材料制备工艺和结构-性能关系,重点关注了梯度组成分布对复合材料结构和宏观
学位
耐磨材料在人类社会的各行各业中都有着举足轻重的作用,在矿业、水电、机械等行业都有耐磨材料的身影。传统的耐磨件多采用金属材料制备,而且一直应用至今。近些年来,随着现代科技的发展,各种工业产能持续增加,机械零件的频繁更换给企业和环境带来了巨大的压力,传统的金属耐磨材料已逐渐无法满足工业需求。因此,具有优良性能的陶瓷颗粒增强铁基复合材料进入人们的视野,颗粒增强铁基复合材料具有高强度、高的刚度及高耐磨性,
学位
氧化钨是一种较为理想的电致变色材料,被广泛应用于多彩色智能窗、汽车后视镜与电致变色开关等领域,但是目前仍然存在响应时间较长、颜色变化较单一等不足之处。鉴于这些问题,本课题以提高WO3电致变色切换时间和丰富电致变色的颜色切换为主要切入点,设计了一种等级孔结构WO3,拟通过等级孔薄膜中整齐有序的孔结构和大比表面积优化样品电致变色性能。本课题又进一步在等级孔结构WO3的基础上通过连续离子层吸附法引入了导
学位