沉浸式电子设备均温系统研究

来源 :合肥工业大学 | 被引量 : 0次 | 上传用户:hjh8607
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网、物联网、大数据以及人工智能等新型高新技术的快速发展,芯片的运算速度不断加快,集成度越来越高,尺寸越来越小,导致电子设备的热流密度急剧增加。与此同时,电子设备的热设计研究进度略显滞后,使电子设备的工作温度分布不均且能耗高的状况得不到有效改善,严重影响了电子设备的正常工作。本文以传热学、计算流体动力学等相关理论为基础,针对电子设备高热流密度下的散热问题,采用沉浸式散热技术,用于电子设备的散热,以实现能耗低、能源利用率高、散热能力强的电子设备均温系统。首先,阐述了沉浸式均温系统设计原理,将均温系统分成内循环和外循环两个部分。介绍了内循环系统的组成单元以及模块化散热方法,分析了不同地区外循环系统的实现形式,分析了翅片管换热器的传热过程,通过对多种冷却介质的对比分析,最终选择氟化液FC-3283作为本均温系统的冷却介质。然后,在SolidWorks环境中对均温系统完成了结构设计,利用Fluent软件模拟电子设备周围温度场的分布及其附近流场中冷却介质的流动状态,研究了冷却液输入流速不同、输入流量不同以及电子设备摆放形式不同对均温系统散热性能的影响。搭建沉浸式电子设备均温系统实验台,设计流速和流量对散热性能影响的实验,对测点布置、实验工况、实验步骤进行了详细说明,并对六种工况分别进行了实验。最后,通过对仿真结果和实验数据的分析得出,增大冷却液的流速和流量,可以加快流体湍动程度,有利于提高换热效率,采用竖摆的形式放置电子设备相较于横摆散热效果更好,六种实验条件下的PUE均低于1.2,证明本文设计的沉浸式电子设备均温系统相较于传统的风冷散热方式性能更好,节能效果显著。
其他文献
短波红外(SWIR,一般为700-3000 nm)光谱区域内的光电检测,由于其宽泛的军事和民用应用,如夜视仪、光通信、轨迹探测、环境监测、监视仪、遥感成像等,一直以来都是研究热点,而高性能短波红外光电探测器是激光测距仪、夜视仪、热成像系统、红外数码相机和医疗诊断仪等许多电子和光电子产品的关键部件。目前,市面上大多数短波红外光电探测器是由传统的无机半导体制成的,包括晶体硅、硅锗异质结和Ⅲ-Ⅴ族半导体
飞秒激光以其热效应小,加工精度高等特点,在微纳加工领域具有独特的优势。近几十年来,随着微纳米制造技术的发展及其在各个领域的应用,表面科学受到了研究人员的极大关注。表面润湿性作为表面科学的一门分支学科,描述了液体和固体表面之间行为的性质和特征。本文主要研究飞秒激光制备的超润滑仿生功能表面对微流体(液滴/气泡)行为的操控,实现了液滴滑动和钉扎行为的按需控制以及气泡的单向输送,进而研究了其在微流体操控等
长度和位移是目前科学技术领域里比较重要的物理量,随着科学技术的进步与发展,航空航天、精密机械制造加工、纳米技术工业装备等各个领域对位移测量的精度准确度要求越来越高。而在测量位移的多种方法中,激光测量由于本身的非接触特性、测量速度快、可溯源等特性,被广泛应用于各个领域。而其中单频激光干涉仪相对于双频激光干涉仪来说,在满足高精度和高分辨率的条件下,具有信号处理过程简单、易于集成、系统结构简单等特点。本
一般物质都有一定程度的介电特性。在电场作用下物质本身会有一定程度的极化(polarizable)现象,并在极化后物质内部电荷会顺着外加电场的方向有序排列。如果外加的电场不均匀,极化的微粒会受到介电泳动力(dielectrophoretic force)而发生移动。利用电场来操纵微粒的介电泳动的技术,可通过改变电学信号参数进行介电泳力的控制,再结合光学、声学、电磁学等技术可以在微芯片上实现对微粒的操
近年来生物材料因其生物亲和力强、透氧性和亲水性等无法比拟的优点越来越受到重视。一些科学家使用生物材料制备了各式各样的光子器件,其中,利用天然丝制作生物光纤设计光子器件是一个十分有趣的研究方向。本论文以天然丝制作生物光纤为研究对象,探索生物材料作为随机激光增益介质的可行性和优越性,研究随机激光在生物材料中的传播形式。通过改变泵浦光位置从而调控随机激光的波长。本论文使用以染料Rh6G掺杂的生物蚕丝电纺
近年来,由于对可穿戴设备和电子皮肤的需求迅速增长,利用共轭聚合物制备本征可拉伸的电子器件逐渐成为该领域研究的重点之一。共轭聚合物薄膜的性能不仅取决于它们的分子结构,而且还与它们的分子取向、分子堆积、晶态结构、薄膜厚度等微、介观尺度密切相关。传统的三维体相膜结构复杂,不利于探索结构与电、力学性能之间的关系。而具有几个单分子层厚度的二维超薄膜可以简化体相膜复杂的多级结构,为探究材料结构与其电、力学性能
优势流是影响土壤非平衡水分和溶质运移的重要机制,也是土壤与地下水快速补给、径流及污染物运移的关键途径,而大孔隙流是优势流最常见的类型。大孔隙结构特征是影响优势流程度最直接的因素,因此本文在选取代表性结构特征的基础上采用室内人造大孔隙土柱模拟实验研究饱和条件下大孔隙直径、数量和位置对壤粘土土壤水分和溶质运移的影响规律,并通过分区收集出流液研究平面水和溶质通量时空变化过程,最后使用Hydrus中的双重
液晶显示器已经是平板显示器中的主流产品,它在人们生产生活的各方面都有广阔的应用。作为液晶显示器的关键组成部件,背光模组逐渐向大尺寸、超薄化、低成本的方向发展。为了缩短混光距离,通常采用二次透镜对LED光源的光线进行再次分配,因此针对透镜的设计工作就非常重要。本文基于非成像光学理论,提出了直下式LED背光模组中双自由曲面透镜的设计方法。首先对确定设计指标下单个透镜目标面照度最优分布进行了讨论,在此基
二维半导体材料由于具备优异的电子和光电子特性,被认为是最有可能替代硅基材料的新一代材料。硒化铟(In2Se3)是一种具有结晶多态性和多种优异电子特性的III-VI二元硫族化合物,它的直接带隙(2.09 e V)既允许高吸收系数,又可以在光激发下有效生成电子-空穴对,这在光伏和光电导探测器等应用中引起了极大关注,被认为是用于光伏器件、光电、相变存储器和离子电池的有前途的材料。这里我们通过引入内建电场
热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料是许多研究人员用来制备高性能OLED器件的主要选择之一,但TADF材料设计过程中对分子结构有十分严格的要求,而激基复合物则能以更简单的方式获得与传统TADF材料同样的效果。本论文主要研究激基复合物对器件性能和发光机制的影响。通过优化客体掺杂、选择合适的激基复合物主体及界面激基复合物下的超