论文部分内容阅读
本文对求解非线性凸集约束最优化问题的Goldstein-Levitin-Polyak(GLP)梯度投影算法给出了两种改进,主要内容如下:
(1)基于修正拟牛顿方程,结合Goldstein-Levitin-Polyak(GLP)投影技术,本文建立了求解带凸集约束的优化问题的两阶段步长非单调变尺度梯度投影算法,证明了算法的全局收敛性、单位步长的取得和一定条件下的Q超线性收敛速率。算法步长的选取分为两阶段,第一阶段选择无约束步长后再利用投影确定算法的可行下降方向,第二阶段利用非单调线搜索技术确定下一个迭代点。数值实验表明算法是有效的,适合求解大规模问题。
(2)基于修正拟牛顿方程,结合Goldstein-Levitin-Polyak(GLP)投影技术和张洪超非单调技术,本文建立了求解带凸集约束的优化问题的两阶段步长ZhangH.C非单调变尺度梯度投影算法,证明了算法的全局收敛性、单位步长的取得和一定条件下的Q超线性收敛速率。算法步长的选取分为两阶段,第一阶段选择无约束步长后再利用投影确定算法的可行下降方向,第二阶段利用Zhang H.C非单调线搜索技术确定下一个迭代点。数值实验表明算法是有效的,适合求解大规模问题。