论文部分内容阅读
本文从两个角度探索特征值问题的有限元解.一方面,我们讨论下谱界,包括渐近下谱界和可保证下谱界:另一方面,我们讨论多网格离散,包括Ciarlet-Raviart混合法的二网格离散,多网格校正及自适应有限元方法.关于特征值问题的下谱界,首先我们讨论了d(d=2,3,···)维区域上变系数二阶椭圆算子及Stokes算子的渐近下谱界.使用四种非协调有限元(包括Crouzeix-Raviart,推广的Crouzeix-Raviart,旋转Q1及推广的旋转Q1有限元),我们对非协调有限元特征值近似提出了一种校正方法,并证明了校正后的特征值从下方收敛于准确值.而且该校正值仍然保持与未校正特征值相同的收敛阶.这些新的结果移除了特征函数是奇异以及特征值问题系数是常数的限制.其次,关于d(d=2,3)维区域上变系数Steklov特征值问题和反散射中Steklov特征值问题,我们对Crouzeix-Raviart和推广的Crouzeix-Raviart有限元特征值近似执行新的校正,得到了与二阶椭圆及Stokes特征值问题相似的理论结果.最后,通过使用弱形式的极小极大原理,我们得到了流体力学中两个谱问题的可保证下谱界.该极小极大原理是由算子形式的原理推导而来.这两个谱问题分别是流固振动的Laplace模型和晃动问题.需注意的是,与该问题相关的双线性型在H1(?)中均是半正定的.我们通过对解空间及有限元空间增加限制来解决这一难点.关于多网格离散,首先,对于Rd(d=2,3)中带有固定边界条件的重调和特征值问题包括板振动问题及板屈曲问题,我们研究了Ciarlet-Raviart混合法基于移位反迭代的二网格离散方案.使用该方案可以将细网格上一个特征值问题的解归结为粗网格上一个特征值问题的解以及细网格上一个线性方程组的解.使用未被现有工作所覆盖的新的论证,我们证明了当网格尺寸H>h≥O(H2)时,结果解仍然保持渐近最优收敛精度.其次,我们提出一种多网格校正方案来求解一个新的Steklov特征值问题,即反散射中Steklov特征值问题.用这一方案,在细有限元空间上解一个非对称不定的特征值问题可归结为在细有限元空间上解一系列对称正定的边值问题及在粗有限元空间上解一系列非对称不定的特征值问题.我们证明了特征值及特征函数的误差估计.最后,我们进一步讨论了该问题的后验误差估计及自适应算法.我们对原特征函数、共轭特征函数及特征值引入了误差指示子.并且,使用G(?)rding’s不等式及共轭技巧来给出有限元特征函数误差的能量范数的上界和下界,以此表明指示子的可靠性和有效性.对于上述所考虑的特征值问题及提出的方法,我们均给出了与理论结果相符的数值实验.