【摘 要】
:
物联网的高速发展对具有高灵敏度、高集成度、跨环境兼容性的小型化传感器的需求日益迫切。随着众多新兴纳米材料的出现,多种材料、不同工艺在传感领域得到了广泛应用。其中,碳纳米管以其超高的比表面积、超薄的体积、低的噪声、优异的稳定性等优势在传感领域展现出巨大潜力,成为气体传感领域最有前景的材料之一。尽管如此,构建基于碳纳米管薄膜的超灵敏亚ppm量级检测下限的气体传感器仍极具挑战性。其中,氢气作为一种新型清
论文部分内容阅读
物联网的高速发展对具有高灵敏度、高集成度、跨环境兼容性的小型化传感器的需求日益迫切。随着众多新兴纳米材料的出现,多种材料、不同工艺在传感领域得到了广泛应用。其中,碳纳米管以其超高的比表面积、超薄的体积、低的噪声、优异的稳定性等优势在传感领域展现出巨大潜力,成为气体传感领域最有前景的材料之一。尽管如此,构建基于碳纳米管薄膜的超灵敏亚ppm量级检测下限的气体传感器仍极具挑战性。其中,氢气作为一种新型清洁能源在众多领域有着广泛应用,当前对其检测主要集中在4%爆炸极限的应用范围。然而,在深空探测、核电站安全等特种领域需要探测低至10 ppb量级的微量氢气。由于氢原子尺寸极小,无分子极性,ppb量级氢气探测难以实现。迄今为止,碳基传感器主要是基于对材料的优化和对基于电阻结构的一些器件参数改进来增强灵敏度,难以实现灵敏度、选择性、稳定性和寿命的协同优化。在本研究中,我们提出了一种碳基浮栅结构的场效应晶体管(Field-Effect Transistor,FET)型氢气传感器。该结构以碳管薄膜作为沟道材料、采用Pd纳米颗粒进行功能化修饰,利用一层高κ栅介质氧化钇(Y2O3)将沟道与敏感层隔绝开,减少了散射引入,形成了整体调控,以电容耦合的形式使在传统结构中因落在衬底上而失去调制作用的部分敏感材料也得到有效利用,显著提高了传感器灵敏度,在100 ppm浓度氢气下响应提升超过一个量级。该结构还能对沟道中的非特异性吸附位点进行屏蔽,有效防止了由于分子在碳管或衬底上重复吸附/解吸附可能导致的缺陷形成和额外掺杂中心的引入,提升了器件稳定性与选择性,选择比相对于硫化氢提升了168倍,连续工作稳定性和空气环境久置稳定性大大提升。另外,我们还基于Langmuir等温吸附理论提出了适用于碳基浮栅结构的气体吸附模型,与实验数据拟合良好。展现了浮栅结构的显著优越性。此外,我们成功在室温下对90 ppb氢气进行测定,在加温(~100℃)条件下利用底栅电压将传感器偏置在亚阈值区实现了5 ppb氢气探测,这是首次碳基氢气传感器达到核安全领域的早期泄露检测应用要求,也是目前已报道的最低氢气探测浓度。浮栅型碳基氢气传感器灵敏度的优化拓展了此类传感器的潜在应用领域,其选择性、稳定性的改善大大提升了碳基传感器的环境兼容性,其与碳基电路的兼容性让碳基传感系统的实现成为了可能,将促进具有高灵敏度、高选择性的稳定低功耗碳基气体传感器发展,对碳基传感的实用化发展有重大意义。
其他文献
随着计算科学的高速发展,理论模拟在凝聚态物理中起着愈加关键的作用。其不仅可以从原子尺寸水平解释新奇的物理现象,同时还能够预测新材料的物理化学性质,为实验研究提供理论指导。过渡金属硫族化物纳米线具有高弹性、机械稳定等优良物理化学特性,引起了研究者的广泛兴趣。最近,通过对多层2H-Mo6Te6进行真空退火,实验上成功制备出具有一定阵列排布的Mo6Te6纳米线。这种阵列结构的电子性质相对于单根的纳米线发
在过去十几年中,二维材料是人们的研究重点,但是近年来的实验和理论研究发现,层状材料中原子的组成和排列以及层状材料的堆积构型对材料的基本电子性质起着至关重要的作用。这让人们对二维材料的旋转和堆垛有了很大的兴趣。在旋转方面,有很多不同于单层材料的性质相继被发现,比如在旋转双层石墨烯中发现的非常规超导机制等。而在三维堆垛方面,各种比较复杂的拓扑相在不同材料中被发现,比如节点链和Nexus点等。目前实验上
多目标进化算法在解决多目标优化问题时,决策者有时对于各个优化目标的侧重程度并不相同。决策者很多时候只对Pareto最优边界上的一部分解集感兴趣,过多的最优解反而会增加决策者的决策开销。其次,在解决高维多目标问题时,种群中存在大量非支配解,算法性能因缺少选择压力而显著下降。偏好多目标进化算法将偏好信息引入算法从而指导种群进化,得到满足决策者偏好信息的最优解集。这样不仅能够节约计算资源,减轻决策者的决
随着工业和建筑业的飞速发展,人类往大气中排放的污染性气体的量也与日俱增。然而,基于各种敏感颗粒材料的旁热式气体传感器仍遭受着可复制性差的困扰,这限制了该类气体传感器的应用。与此同时,薄膜技术及半导体工艺的飞速发展为传感器的批量生产提供了一种行之有效的方法,通过溶胶-凝胶法、旋涂工艺结合电子束蒸镀技术为制备高性能、适合批量生产的气体传感器开辟了一条新的道路。在本文中,我们分别以铁酸镧(La Fe O
荧光转换型LED照明技术被广泛应用于白光LEDs和植物生长领域。目前,通过黄色荧光粉与蓝光LED芯片组合所得到的照明白光,因缺失红色荧光粉贡献的红光部分,导致显色性差和色温高。因此,限制了其在有高品质要求的室内照明应用。加入红色荧光粉能解决上述问题。另外,荧光转换型LED能为植物提供光合作用所需能量,缩短生长周期,提高产量。红光区域的660 nm和730 nm峰值附近的光是植物生长所需能量波段,能
随着移动机器人的应用场景越来越广泛,各式各样的机器人也逐步进入了人们的视野中,SLAM技术是移动机器人依靠自身搭载的传感器探索未知空间并进行精确导航的重要技术。目前已有的SLAM方法主要是基于理想场景下设计的,而在复杂环境中存在多种因素影响着SLAM系统运行的稳定性。本文主要针对真实复杂环境如:环境纹理缺失、光照不稳定场景等复合型非理想环境,对视觉SLAM中的视觉里程计以及回环检测模块进行了研究与
电磁诱导透明(Electromagnetically Induced Transparency,EIT)是三能级原子系统中量子相消干涉的结果,在透明窗口内,吸收和色散特性都发生了剧烈变化,这在慢光、光学存储和其他非线性光学过程中具备潜在的应用。在各种模型系统(光子晶体波导、光机械系统、耦合光学微腔和超材料等)中,通过设计相干激发路径,能产生类EIT效应,但是基于一维光子晶体纳米梁腔的类EIT效应在
随着物联网技术和可穿戴电子设备的快速发展,传统的电池能源供电已经暴露出许多缺点,例如使用寿命有限和废弃电池对环境的污染,此外,这些新型应用对能源的便携性、可穿戴性和柔性要求也越来越高。最近,具有输出功率高、制备简单、成本低等优点的摩擦纳米发电机,成为了近几年来相关领域的热点。由于具有良好的拉伸性和柔韧性且适用于人体穿戴,聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)被选取为框
近年来,为了保护人类健康和安全,迫切需要对室外空气环境中痕量二氧化氮(NO2)进行高灵敏度和高选择性的检测。异质结的构筑与光激发手段的有效结合是实现室温环境下高性能气体传感器的有效途径。然而,光激发对异质结构材料气敏性能的影响机制尚不清楚。本文以MoS2为研究对象,探索了异质结的构筑对MoS2气敏性能的影响。在此基础上,采用光辅助气体检测模式进一步改善异质结构复合材料气体传感器在室温环境下的气敏性
随着对有机无机杂化钙钛矿(Organic-inorganic hybrid halogen perovskite,OIHP)材料的系统研究,钙钛矿太阳能电池(PSCs)的光电转换效率取得飞速进展,已可以与硅太阳能电池相媲美,然而在面临实际应用的道路上却遇到环境稳定性差的问题。OIHP材料本身对水氧的敏感性,成为商业化的拦路虎。通过优化OIHP材料本身的性质及界面层材料的调控来提高水氧稳定性,是提升