过渡金属氧化物超卤素团簇掺杂的二位原子层材料的的电子和磁学特性的第一性原理计算

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:qdmark
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着石墨烯的问世,其独特的电子特性,使研究者认为它极有可能会在下一代电子器件中得到应用。鉴于石墨烯优良的性质,具有石墨烯结构类似的其它二维材料也受到研究者的关注。在本论文中,我们利用基于密度泛函理论的第一性原理计算方法,对磁性超卤素掺杂的二维单层BN、单层ZnO、以及Gr/ZnO范德瓦尔斯异质结的电子和磁学性质进行了细致的研究。主要内容如下:首先,在论文的第一章中,我们介绍了石墨烯的优良性质,指出了它的不足之处,并简述了类石墨烯的研究的近况。在前人的基础之上,我们提出了自己的研究观点:通过掺杂过渡金属氧化物,来获得形成能更低,磁性稳定的二维材料。其次,在论文的第二章中,我们详细介绍了我们在研究中用到的软件的理论基础-第一性原理密度泛函的理论。接下来,在文章的第三章,详细介绍了我在研究生期间做的主要工作,及工作的意义。具体为:(1)研究了过渡金属(Mn,Fe,Co,Cr,Ni,Ti,V)原子和过渡金属氧化物超卤团族(MnO3(4),FeO3(4),CoO3(4),CrO3(4),NiO3(4),TiO3(4),VO3(4))掺杂的BN的结构稳定性、电子结构、磁耦合特性.通过形成能和结合能的计算研究各种掺杂体系的热力学稳定性和结构稳定性;通过态密度、能带结构、差分电荷密度、以及自旋电荷密度的计算结果研究各种掺杂体系的电子结构和磁耦合特性。(2)研究了过渡金属氧化物团簇掺杂的ZnO单层二维体系的结构稳定性,电子结构和磁耦合特性。(3)研究了 Gr/ZnO-Mn03(4)范德瓦尔斯异质结的电子结构,通过改变层间距和杂浓度调控石墨烯层的自旋注入特性,研究在不改变石墨烯中电子优异性质的前提下引入自旋极化和打开一定的能带隙的可能性。最后,经过一系列的研究,我们得到这样的重要结论:(1)相比单纯的过渡金属原子掺杂体系,超卤素团簇掺杂具有更低的形成能,更高结合能等特性,并使被掺杂的材料获得稳定的磁性。(2)以掺杂MnO3(4)团簇的二维ZnO为磁性衬底,不仅石墨烯层能够打开带隙和导入磁性,而且石墨烯优良的性质基本不受影响,并引起石墨烯层的N型掺杂。通过我们进一步的研究,我们发现当改变Gr/ZnO-MnO3(4)的层间距时,石墨烯层的带隙和磁性都相应增大。
其他文献
京津冀地区作为中国经济增长第三极,对中国的经济增长做出了突出贡献,但环境问题也愈发严重,需要不断提升绿色全要素生产率,促进京津冀绿色发展。本文基于BDDF-GLPI模型,考虑
市场竞争的日趋激烈、市场需求的个性化使得产品更新换代速度加快,产品生命周期普遍缩短。尤其是易逝品在较短时间内就会贬值甚至导致价值丧失,因此,对于未售出产品的退回成
在统计学中影响统计结果的重要因素有两个:一是观测数据,二是对总体某些特性(分布、独立性等)的假设.当观测数据中存在一些不能很好的代表总体的异常点或者研究总体不满足一
本文主要是借助复分析中的留数定理,解析延拓和典型乘积等工具与泛函分析和概率论中的一些重要结果相结合,对随机整函数、多元随机指数多项式及含重点的随机指数多项式等进行
目标追踪技术是计算机视觉技术的重要研究课题,已经广泛应用于视频检索、车辆导航、军事等各个方面。目标追踪,就是对视频序列中的既定目标进行提取、识别,从而获得目标的位
一直以来各家银行为了扩大零售业务规模,提升市场占有率都会致力于跑马圈地,不断扩大客户规模提升持卡人数。这种业务模式当然是无可厚非的,但在不断开源的同时,各家银行都忽
近年来,卷积神经网络以其突破性的成果成为计算机视觉领域的研究热点。在快速发展的同时,业界对图像处理等任务也提出了更高的要求。比如更能充分描述事物的多标签识别中存在
背景:2003年,Mitsui和Chambers等两个实验室几乎同时报道一个新基因,并且正式命名为Nanog。这是一种在原始生殖细胞、内细胞团以及胚胎干细胞(ESCs)中表达的新转录因子。Nano
本文针对分布于中国和塔吉克斯坦的拟隙蛛(蜘蛛目:漏斗蛛科)进行了系统的分类研究。漏斗蛛科目前全世界已知78属1272种,其中拟隙蛛属21种。本研究共报道拟隙蛛属Pireneitega
MgO薄膜由于具有次级电子发射系数(δ)高、化学稳定性好,已广泛应用于多种光电倍增管、微通道板图像增强器、等离子体平板显示器。但受制备工艺影响,MgO薄膜的δ差异较大,且普遍不耐电子束轰击,影响器件稳定性和寿命。本研究采用热蒸镀结合低氧压热活化技术,在单晶硅片、FTO玻璃表面沉积制备了~200 nm厚的MgO薄膜和Al/Zn/Au掺杂的MgO薄膜。采用SEM、XRD、XPS、AES、AFM等方法表