论文部分内容阅读
荞麦的粒径、含水率、品种等因素变化后,砂盘式荞麦剥壳机所需的最佳剥壳间隙和转速等参数都会有所不同。剥壳机出料口荞麦剥出物中未剥壳荞麦、完整荞麦米、碎荞麦米的相对含量反映了剥壳机的剥壳性能,生产中需要根据这些性能参数来调整砂盘间隙和转速以达到较高的剥壳效率。针对目前荞麦剥壳性能参数的检测完全由人工方式实现,主观性强、工作强度大、不能为荞麦剥壳机自适应最优控制提供数据反馈的现状,本文提出了一种基于机器视觉的荞麦剥壳性能参数在线检测方法。1.设计了一种对荞麦剥壳机组现有机械结构和剥壳流程扰动小且经济性较好的荞麦剥出物图像获取方式。出料口落下的部分荞麦剥出物沿一块籽粒滑动托板自然滑落,经LED光源强化照明后使用工业相机以300微秒快门时间对其进行图像采集。图像中荞麦籽粒数目平均为900粒左右,清晰无拖影且无堆积。2.在荞麦剥出物图像的预处理中,使用带二阶拉普拉斯修正项的边缘自适应插值算法进行插值重建,减弱了荞麦籽粒边缘处的拉链效应。使用空间域滤波算法对噪声进行了滤除,减弱了由噪声导致的伪彩色现象。使用直方图拉伸方法进行增强处理,使籽粒与背景在边缘处对比更明显,粘连籽粒中间的背景区域更加突出。3.提出了一种在蓝色背景下对荞麦剥出物图像进行N×(B-R)灰度化的方法。这种方法可使图像的灰度分布满足阈值背景分割的需求,同时在不损失粒型较小的碎荞麦米的情况下,产生对粘连分割有利的籽粒外形变化。4.提出了一种类圆形农作物籽粒的粘连分割方法。在籽粒的距离骨架图像上进行区域极大值滤波以提取供分水岭分割使用的种子点,然后使用分水岭分割算法对种子点标记后的籽粒距离图像进行分割。该方法在试验中的粘连籽粒平均正确分割率为97.8%。5.提出了一种荞麦籽粒交互式快速标注方法并进行了软件实现,使用这种方法可对大量籽粒样本进行快速标记。试验中标记一个荞麦籽粒平均用时小于1.5秒。6.选择RGB颜色空间三个通道的灰度均值、灰度标准差和偏度,形状特征中与形态无关的面积、长轴长、短轴长和周长,共13个特征作为荞麦籽粒特征,使用BP神经网络对荞麦剥出物中的各种籽粒成分进行识别。试验中未剥壳荞麦、完整荞麦米和碎荞麦米的识别率分别为99.8%、97.8%和95.4%,综合正确识别率可达98.6%。以单一粒径不同砂盘间隙这种剥壳工况变化为代表,试验所提出的机器视觉检测方法对出料口荞麦剥出物成分比例变化的检测效果。试验结果表明,该方法得到的出米率能够反映荞麦剥壳机组的剥壳性能。处理和识别一幅包含897个籽粒的1824×1368像素图像耗时5.15秒,运行时间能够满足在线检测需求。