论文部分内容阅读
金刚石由于具有极其优异的物理性质、良好的化学稳定性、优良的机械性能(比如耐磨、耐高温、高硬度、耐腐蚀)、宽带隙以及生物相容性等而被认为是在各种领域里最有前景的工业材料之一。然而由于资源短缺以及高昂的价格,使其在科学与工程上的应用受到很大的限制。近期,随着金刚石薄膜在各种基底材料上沉积技术的迅速发展,使得在各个领域开发应用这些超级优异性能成为可能。通过掺杂一定的元素比如硼、氮或是磷,可以使禁带宽度大于5.45eV的金刚石具有导电性。正因为如此,金刚石被认为是基于传感器应用,进行光化学、化学以及电化学修饰最具吸引力的一类表面材料。本论文主要致力于发展金刚石表面的功能化修饰方法,开发研究出了多种简便易行并具有可控性的反应方法,成功将多种官能团导入到金刚石表面。这些方法主要是以化学、光化学以及电化学方法为基础。首先用三种不同的氧化方法(电化学氧化、紫外/臭氧技术的光化学氧化以及氧气等离子体氧化)对氢终端掺硼金刚石表面进行了氧化,其中光化学氧化的时间为5分钟、10分钟、15分钟以及55分钟。采用水表面接触角、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子光谱(XPS)以及电化学分析(Mott-Schottky曲线与循环伏安曲线分析)对所得氧终端表面进行了表征,定性定量地研究对比了金刚石表面经氧化所形成的各种含氧官能团(羟基、羰基、羧基以及醚基)。用3-氨基丙基三乙氧基硅烷(3-Aminopropyltriethoxysilane,APTES)及三氟乙酸(Trifluoroacetic acid,CF3COOH)(这两种物质均只与羟基反应,对于氧终端表面的其它官能团(羰基、羧基或是醚基)不具有任何反应活性)分别对各种氧终端金刚石电极表面进行了功能化修饰,并采用X射线光电子光谱对两种物质在样品表面的修饰密度进行了检测分析。结果发现,电化学氧化所形成的含氧官能团主要是以醚基或羟基形式存在的C-O基团,其中羟基(C-OH)官能团要多于醚基(O-C-O)官能团。短时间(≤15分钟)的光化学氧化过程中所形成的含氧官能团也主要以羟基或是醚基的形式(C-O)存在(其中羟基(C-OH)官能团偏多),并且光化学氧化15分钟后样品表面仍有C-H存在;而光化学氧化55分钟后,表面形成的C-O基团则更多的由醚基(O-C-O)官能团组成,并且表面氢终端层被全部氧化。氧气等离子体氧化处理后,表面含氧官能团数目远远小于电化学与光化学氧化的表面。氧终端金刚石功能化修饰后的表面检测结果表明,3-氨基丙基三乙氧基硅烷修饰密度越高的金刚石表面同时具有更大的平带电位。这种现象表明平带电位的正向偏移与表面羟基官能团(C-OH)的存在数目有直接关系,而与醚基(C-O-C)官能团的关联度则不大。根据这一结论,我们发现电化学氧化是最为有效地一种氧化方法,它使样品表面生成最多的羟基官能团(C-OH),并且不会像氧气等离子体氧化处理那样会使样品表面局部发生石墨化。然而,短时间的光化学氧化(5到15分钟)不仅可以使硅烷化表面具有很高的表面原子N/O比率,还可以加大电子迁移动力学(氧化15分钟),并且也可以氧化不掺硼金刚石样品。将连有乙炔基的分子(乙炔基二茂铁、乙炔基噻吩以及自行合成的乙炔基环玢)第一次通过“点击化学”连接到叠氮终端的掺硼金刚石表面上。其中,叠氮终端是通过对叠氮苯甲酸与氧终端掺硼金刚石表面羟基官能团间的酯化反应所得。采用X射线光电子光谱分析,表面水接触角测定以及电化学性能检测对各个修饰表面的化学组分和表面性能进行了分析。结果发现,1)具有良好电化学活性的二茂铁与掺硼金刚石表面叠氮终端的连接反应表现出高度的专一选择性,并且所得表面二茂铁覆盖率较以往文献有了很大的提高;2)乙炔基噻吩与掺硼金刚石终端叠氮间成功发生叠氮-乙炔[3+2]环化加成反应。所得噻吩终端掺硼金刚石表面在噻吩单体溶液中会发生噻吩电化学聚合,从而在样品表面形成导电聚合物——聚合噻吩。分析表明聚合噻吩与样品表面是共价键合的;3)通过点击化学将炔基修饰的环玢成功连接到叠氮终端的掺硼金刚石表面。本文中另一个与氧终端掺硼金刚石表面化学反应活性相关的反应是一离子液体——1-乙酸-3-庚基咪唑-双(三氟甲基磺酰)亚胺与氧终端掺硼金刚石表面间的酯化反应。采用X射线光电子光谱分析,表面水接触角测定以及电化学性能检测对所得修饰表面的化学组分和表面性能进行了表征分析。对1-乙酸-3-庚基咪唑-双(三氟甲基磺酰)亚胺修饰金刚石表面上的(CF3SO3)2N-进行了阴离子(BF4,(CF3SO3)2 N,NO3以及PF6)交换反应研究。结果表明,在催化剂——二环己基碳化二亚胺(DCC)以及4-二甲氨基吡啶(DMAP)存在的条件下,1-乙酸-3-庚基咪唑-双(三氟甲基磺酰)亚胺被成功键接到氧终端掺硼金刚石表面。循环伏安曲线分析发现,由于咪唑环上带有负电荷的胺基与电解液中的负离子介质——Fe(CN)64-相互之间的静电作用,1-乙酸-3-庚基咪唑-双(三氟甲基磺酰)亚胺对掺硼金刚石电极的修饰并没有增加电极表面氧化还原反应的不可逆性。阴离子交换反应研究发现在(CF3SO3)2 N-与BF4-的多次交换过程中,样品表面水接触角大小总体呈交替规律变化。最后,对氢终端掺硼金刚石表面(H-BDD)的卤化修饰及其化学反应活性进行了研究。采用N-溴代丁二酰亚胺(NBS)以及N-氯代丁二酰亚胺(NCS),通过自由基取代反应对氢终端掺硼金刚石分别进行了溴化与氯化,其中自由基引发剂为过氧化苯。这一反应方案通过对氢终端掺硼金刚石的表面化学修饰可以阻止样品表面的氧化,从而使金刚石表面不仅可以进行化学修饰还可以采用电化学修饰。通过格氏试剂与溴化掺硼金刚石表面的反应验证了卤化金刚石表面的化学反应活性。进一步开发研究了另一种叠氮终端制备方法——溴化金刚石表面与二甲基甲酰胺(DMF)溶液中的叠氮化钠发生亲核取代反应形成叠氮终端,并采用点击化学法将乙炔基二茂铁连接到此叠氮终端掺硼金刚石表面。采用X射线光电子光谱分析,表面水接触角测定以及电化学性能检测对所得修饰表面的化学组分和表面性能进行表征分析,进一步证实了各个反应的有效性。