论文部分内容阅读
近年来,各种智能机器人如雨后春笋般涌现,正在不断改变着我们的生产和生活。越来越多的企业和科研机构投入大量人力和物力到智能机器人的研究中,相关实验室也在高校中纷纷成立。语音是人类进行交流时最直接、最简便、最高效的表达方式,是最丰富的信息传递载体,也是智能机器人与人类进行人机交互的重要方式。藏族是中华民族大家庭的重要成员,藏语是国内使用人数最多的民族语言。随着藏区社会经济的发展,各类智能技术和产品本地化的研究就显得更加紧迫。由于藏区经济、社会和科技的发展相对国内其它地区滞后,目前尚未有正式发布的、面向藏语的智能机器人产品,也没有成立机器人研究相关课题和团队。本文结合地区特色,研究和实现了基于机器人操作系统(ROS)的地面移动机器人藏语语音控制系统,其包括藏语语音识别的研究与实现、地面移动机器人的移动控制设计与实现两部分内容。对于藏语语音识别,本文研究了基于动态时间规划(DTW)算法和基于高斯混合隐马尔可夫(GMM-HMM)模型的两种语音识别方法。首先,结合机器人控制的实际应用需要,收集了100条控制命令(其中拉萨话49条,安多语51条),录制创建了5000个语音文件的语料库。其次,选取其中1000个语料作为测试集,其余4000个语料作为训练集。最后,在基于DTW的语音识别中使用偶然模板训练法进行模型训练,并验证了该方法的语音识别率为90.9%;在基于高斯混合隐马尔可夫模型的语音识别中进行模型训练,并验证了该方法的语音识别率为94.4%。在ROS地面移动机器人控制方面,本文着重研究了机器人操作系统ROS1.0架构特点、工程结构和通信机制,并分别设计实现了基于DTW和基于GMM-HMM的藏语语音命令词识别的移动机器人控制系统,并在Turtle Bot2移动机器人平台上进行了测试。测试表明,系统具有良好的可用性,对藏语语音指令的识别率较高,地面移动机器人接收指令后运动顺畅无误。