多领域文本情感分析算法研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:yayabaobao123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在实际应用中,情感分析通常是与领域相关的,由于领域之间的语义差异,相同的词在不同领域所表达的情感极性可能是矛盾的。因此,在特定领域训练好的模型,可能无法在另外一个领域很好的运行。另外,领域之间可能存在公共信息,为每个领域都训练单独的情感分类器会显得比较冗余。因此本文的工作以此作为出发点,旨在研究如何充分利用多个领域有限的训练数据来提高所有领域的分类性能。与此同时,本文会聚焦于跨领域文本情感分析场景下,探索如何从多个含有丰富的带标签训练数据的领域,为无标签的领域迁移情感知识。因此,针对上述问题,将本文的工作归纳如下:首先,基于多任务学习,本文提出了一个新颖的多领域文本情感分析模型,该模型巧妙的将情感文本的粗粒度和细粒度标签信息利用起来,并通过两个密切相关的任务进行联合训练。在多领域文本情感分析基准数据集上,相较于单任务模型以及朴素的私有-公有模型,该多任务学习模型都取得了领先的效果。其次,本文转向了跨领域文本情感分析场景,旨在为无标签的领域迁移情感知识。故本文通过引入对抗训练,并放弃了常用的领域自适应方法,提出了一种称为标签知识迁移学习的方法来从源域迁移标签知识到目标域,同时,为了提高标签知识的置信度,我们给模型添加了一个适配器,并且采用了内部和外部的投票机制,为未标记的目标域样本提供置信度更高的标签。在Amazon评论以及FDU-MTL两个数据集上,相对于所有的基线模型,都有了显著的提升,并通过对比实验,验证了我们提出的标签知识迁移的方法是有效的。最后,本文引入了预训练模型BERT作为多领域文本情感分析的基模型,同样重点关注跨领域文本情感分析的场景。通过一个两阶段训练的模型,在第一个阶段微调预训练模型BERT,在第二个阶段为目标域迁移情感知识。同时,本文设计了平均值和面向目标域的两种组合方法,来利用第一阶段微调好的源域模型,为目标域迁移情感知识。最后的实验结果也表明了预训练模型的优秀性能,并且通过对比实验发现,只有通过微调的预训练模型,才能获得显著的性能提升。
其他文献
近年来,利用深度神经网络(Deep Neural Networks,DNNs)进行医学图像分割取得了显著的进展。然而,深度神经网络通常需要大量的数据和标注进行训练,对于医学图像,图像采集设备及患者隐私等问题导致数据与标注都代价高昂且难以获取。为解决此问题,本文提出了一种基于距离度量学习(Distance Metric Learning,DML)的小样本(单样本和少样本)医学图像通用分割框架。现有的
计算机断层成像(Computed Tomography,CT)是一种通过X射线扫描待成像物体并采集投影数据实现内部结构成像的技术。由于X射线对人体健康的危害大,近年来,学者们研究利用传统CT重建方法基于稀疏角度X光重建CT,进而降低X射线使用剂量,但是在两个角度的重建中无法生成可理解的断层图像。而基于深度学习的图像重建方法对X光在二维空间的变化提取能力有限,且不同角度的重建结果不一致。本文通过分析
随着多媒体技术的不断发展和进步,以视频监控、远程会议和高清电视为代表的视频应用在人们的生产生活中发挥着重要的作用。然而由于当前计算机和网络系统中传输带宽、存储空间、系统输入输出性能等因素的种种限制,很多视频系统普遍存在着分辨率较低和图像质量差的问题。为了提升视频帧的图像分辨率和整体质量,视频超分辨率技术受到越来越多研究者的关注。视频超分辨率旨在通过对低分辨率视频进行一系列技术处理,增加其像素密度并
随着市场经济与科学技术的迅速发展,在人工智能的强大引擎驱动下,井喷式的出现了大量的机器学习应用场景。而监督学习表现良好则需要大量的有标签的标注数据,该任务开销庞大且繁琐无聊,故迁移学习在智能时代受到越来越多的关注。在迁移学习的相关技术中,多源领域自适应是重要的关键技术之一。多源领域自适应研究如何通过利用多个源领域知识学习目标领域,加强领域自适应能力,缓解了负向迁移。近年来,得益于人工智能和计算机视
近年来,通过计算机视觉的方法对目标物体表面进行三维重建一直是研究热点。本文以市场上常见的激光双目三维成像系统为研究对象,对该系统中涉及的关键技术:立体匹配和点云拼接,展开深入的研究,提出了重建过程中的关键步骤的优化思路,并根据优化的思路方法设计了针对性的实验来验证算法的有效性。具体来说,在立体匹配的激光光条中心提取的阶段,提出了利用方向模板的方法来优化灰度重心法在激光光条走向变化较大时的光条中心提
纳米电介质是一种具有性能可编辑潜力的新型电介质,其通过在聚合物基中均匀填充纳米颗粒可以获得优异的介电特性,被认为是未来最有潜力的电介质材料。然而,纳米填料团聚会导致纳米电介质无法达到预期的性能,甚至导致纳米电介质性能的严重退化。目前,团聚对材料的影响程度很难量化,是一个亟待解决的难题。使用扫描电子显微镜(SEM)拍摄纳米电介质图像并进行处理是一种分析团聚现象的有效手段。然而,受限于该领域图像处理的
叶面积指数(Leaf Area Index,LAI)是衡量植物生长状况的一个重要参数。它也是农业科学、生态科学、遥感科学中众多数学模型的基本参数。叶面积指数(LAI)控制着水、营养和碳循环中的许多生物和物理过程,被定义为单位地表面积的单侧绿叶面积。针对当前主流的LAI间接测量法具有误差大,精度低,稳定性低等缺点。本课题基于摄影法,将计算机视觉技术应用到LAI测量中,开展从单视角顶视法和多视角精确构
视觉定位技术作为移动机器人自主导航的核心技术,在赋能空间位置感知方面有着重要的价值。不对环境做任何限制,只依靠运动目标携带的相机就可实现定位功能的特点,使得视觉定位系统可广泛地应用于国防领域、航空航天领域、工业领域、日常生活等场景。尤其对于卫星信号缺失,有源定位无法部署或大范围覆盖的复杂环境,视觉定位更是凭借应用场景丰富,载体类型不限,成本可控的优点,在工业界和学术界引起了广泛的兴趣。视觉里程计(
航拍图像的目标检测是计算机视觉研究领域的前沿课题之一,在诸如城市土地使用类型分析,交通监测和农作物生长监测等领域都取得了广泛应用。目前应用最广泛的目标检测方法大多都基于深度学习,其中又根据是否使用一系列预先铺设好的锚框(Anchor)分为Anchor-Based和Anchor-Free两种类型,常见的Faster-RCNN、Cascade-RCNN等都属于Anchor-Based一类。最近兴起的A
近年来,移动互联网技术的快速进步和智能设备的广泛普及使得基于位置的社交网络平台得到了空前的发展。位置社交网络可以将虚拟的网络社区和真实的物理世界联系在一起,从而使用户能够通过移动设备将自己喜欢的地点分享到网络上,帮助其他用户发现有趣的地点。因此,向用户推荐感兴趣的地点成为了一个热门的研究方向。兴趣点推荐系统主要是通过用户的历史签到数据来获取用户的出行偏好,以此向用户推荐地点。但现有的关于兴趣点推荐