【摘 要】
:
钢筋混凝土(Reinforced Concrete,RC)剪力墙结构是我国高层建筑中最常见的结构形式。而RC装配式剪力墙结构因其工业化程度高、建造速度快、建筑产品质量高、有利于环境保护等方面的优点,近年来得到了广泛的关注。拼接处的有效连接是保证RC装配式剪力墙结构安全的关键,本文提出采用冷挤压套筒连接和钢板螺栓连接两种新型RC装配式剪力墙,可解决现有钢筋灌浆套筒连接方式存在的质量检测困难、灌浆套筒
论文部分内容阅读
钢筋混凝土(Reinforced Concrete,RC)剪力墙结构是我国高层建筑中最常见的结构形式。而RC装配式剪力墙结构因其工业化程度高、建造速度快、建筑产品质量高、有利于环境保护等方面的优点,近年来得到了广泛的关注。拼接处的有效连接是保证RC装配式剪力墙结构安全的关键,本文提出采用冷挤压套筒连接和钢板螺栓连接两种新型RC装配式剪力墙,可解决现有钢筋灌浆套筒连接方式存在的质量检测困难、灌浆套筒尺寸过大不利于墙体钢筋排布等问题。对两种新型连接方式的RC装配式剪力墙开展了抗震性能研究,主要研究内容如下:1.提出了一种冷挤压套筒钢筋连接RC装配式剪力墙,其主要的特点是:通过对装配式剪力墙拼缝连接处采用竖向钢筋梅花形布置,使其能满足钢筋冷挤压套筒连接的施工要求。对7个装配式剪力墙试件和2个现浇剪力墙试件进行了拟静力试验研究,结果表明:冷挤压套筒钢筋连接RC装配式剪力墙具有较好的抗震性能,其滞回曲线与全现浇试件一样饱满,呈弓形,两者骨架曲线基本一致,耗能能力和延性接近,设置后浇拼缝对墙体的刚度和承载力影响较小。2.提出了一种钢板螺栓连接RC装配式剪力墙,其主要的优点是:在装配式剪力墙拼缝连接处采用钢板螺栓连接,达到现场施工简便的目的。对5个装配式剪力墙试件和1个现浇剪力墙试件进行了拟静力试验研究,结果表明:在钢板螺栓连接区,连接钢板能有效传递水平和竖向荷载,在地震荷载作用下仅有较为轻微的混凝土损伤。钢板螺栓连接RC装配式剪力墙具有较好的抗震性能,其滞回曲线比全现浇试件饱满接近,且具有更高的承载能力和耗能能力。3.对两种新型RC装配式剪力墙进行了有限元数值模拟,通过试验和数值模拟结果的对比,对试验和数值模拟两种研究方法的可靠性进行相互印证。对两种新型RC装配式剪力墙在地震作用下的工作机理和破坏形态进行分析,并对剪力墙的剪跨比、轴压比、墙体和边缘构件配筋率、钢板连接处的含钢率等参数进行变化分析研究。4.在试验和数值模拟研究的基础上,分别提出两种新型RC装配式剪力墙的承载力和恢复力模型计算方法,并通过与试验结果对比,验证方法的可靠性。为实际装配式RC剪力墙结构的设计提供参考依据。本研究所开发的两种新型RC装配式剪力墙连接方案、连接处传力机理和设计计算方法及应用分析等研究成果可为RC装配式剪力墙结构的设计提供参考,具有重要的学术价值和工程应用前景。
其他文献
烟青虫Heliothis assulta(Guenée),属鳞翅目(Lepidoptera)夜蛾科(Noctuidae),是烟草、辣椒等茄科作物的重要害虫。该虫危害严重,防治困难,其爆发年份在烟草上造成的损失占烟草生产损失总量的15%以上。目前针对烟青虫的防治手段仍以化学防控为主,由其引发的污染环境、天敌杀伤、抗药性提升等问题日趋严重,生产中急需寻找新型绿色防控技术以替代传统的药剂防治。生物防治法
二氧化碳捕集、利用与封存(CCUS)是减少CO2排放,实现碳达峰与碳中和的重要方法之一。CO2增产致密油可在提高原油采收的同时对部分注入的CO2进行地质封存。CO2增产致密油过程受地层微/纳多孔结构、压力变化引起的过饱和析出、多相流体迁移和复杂润湿特性影响,揭示微/纳多孔内多相输运机理与规律是进一步优化CO2增产致密油技术的重要基础。本文通过理论分析与孔隙尺度实验相结合的方法,揭示了CO2/油/水
番茄匍柄霉菌(Stemphylium lycopersici,S.lycopersici)引起番茄灰叶斑病,是具有重要研究价值的病原真菌。然而,由于缺乏对番茄匍柄霉菌的功能基因组学研究,其致病因子和致病机理尚不清楚。已有研究表明NLP(necrosis-and ethylene-inducing peptide 1-like protein)蛋白是一类病原相关分子模式。在这项研究中,我们首次在番茄
滨海盐田伴随着经济社会高速发展应运而生,又随着经济体制转型而逐渐走向废弃。对废弃盐田实施综合治理并优先复垦成农田是积极响应“黄河流域生态保护和高质量发展”这一重大国家战略的具体行动,这一举措对缓解我国人地矛盾、增加有效耕地面积等方面可起到重要推动作用。然而,由于盐田独特的生产环境,在经过一系列工程措施和大水压盐复垦成农田后,虽可以种植少量的耐盐和耐贫瘠作物,但想要短时间内提升耕层质量、提高土地产出
草莓因其独特的风味和丰富的营养,深受人们喜爱,是重要的鲜食和加工水果。提高草莓的果实品质和抗性一直是果树研究的重点,而植物蔗糖非发酵蛋白激酶-1(SnRK1)在调控碳水化合物代谢,以及应对生物和非生物胁迫方面起重要的开关作用,研究SnRK1对果实蔗糖代谢和抗逆性的影响对于提高果实品质和产量具有重要意义。因此本研究以‘妙香7号’草莓为试材,研究了草莓SnRK1对果实蔗糖代谢和灰霉病抗性以及对淹水胁迫
叶片是植物光合作用、呼吸作用和蒸腾作用的主要器官,根据一个叶柄上所生叶片的数目可分为单叶和复叶,而叶的边缘也有平滑和锯齿之分。锯齿叶具有更大的延展空间,有利于捕获光能,此外还能提高植物对外界胁迫的抗性。研究植物叶缘形态对于提高植物光能利用率,改善植物对环境的适应能力以及提高观赏价值都有重要的意义。叶缘的形态受基因、激素、环境信号的共同调控,虽然目前对叶缘形态的调控通路已初步报道,但相关的调控基因仍
刚地弓形虫(Toxoplasma gondii)可以引起弓形虫病,是世界范围内广泛存在的一种专性细胞内寄生原虫,能够感染包括人类在内的几乎所有温血动物,对免疫功能低下的人或者孕妇危害更大。弓形虫生活史复杂,致病寄生虫需要依赖表观遗传学控制机制来调控基因表达,促使对不同组织或压力环境的适应。弓形虫的裂殖周期可分为三个阶段:弓形虫对有核宿主细胞的主动入侵,宿主细胞内的复制以及主动从宿主细胞逸出。在宿主
连作障碍制约我国苹果产业健康可持续发展,寻求绿色、高效的防控措施是防控苹果连作障碍的理想途径。生物防治是苹果连作障碍防控的重要途径之一。本研究探讨了27个老龄苹果园连作障碍的严重程度与丛枝菌根真菌(AMF)多样性的相关性,分离鉴定出一株高效AMF菌株并对其防控效果进行验证,分析了接种AMF苹果砧木抵御腐皮镰孢菌侵染的生理和分子机制。同时,从接种AMF苹果砧木M9T337中筛选并克隆了一个响应腐皮镰
随着无线通信领域的快速发展,对于无线网络和设备的能耗要求也越来越高。一个完整的无线通信系统不仅仅需要提供可靠的通信,还要能够降低日常运行过程中的能耗。然而要想获得更高的数据速率,只能通过消耗更多的能量来实现。在5G通信中,当能效不变的前提下,100倍的数据速率将与100倍的能耗呈正相关。此外,这也可能产生环境问题,因为无线网络通常是由不可再生的绿色资源供电。当然陆地和水下环境中的各种限制也降低了无
大白菜杂种优势明显,主要利用自交不亲和系生产F1代杂交种。自交不亲和性比较强的亲本有利于提高杂交率,但自交繁种十分困难,导致具有优良性状的强自交不亲和系不能作为亲本,极大地限制了亲本的选择和选配。因此亟需对大白菜自交不亲和的调控机制进行系统解析,以提高自交不亲和系亲本的繁种效率,扩大亲本可选择范围。本研究发现大白菜自交不亲和反应由受体激酶FERONIA介导的活性氧(ROS)所调控,柱头ROS在自花