【摘 要】
:
随着第三代半导体的发展,工业界对于功率器件的开关频率,电压和功率有更高的要求,这也意味着未来功率器件的封装需要承受更高的工作温度及更大的功率密度。纳米铜材料得益于自身极佳的热电性质,以及纳米材料可低温烧结的特性,研究纳米铜在功率器件封装中的应用具有很大的实用前景和价值。本文针对纳米铜烧结型器件的互连工艺和可靠性这两方面问题进行了研究。第一方面,本文从烧结温度、烧结氛围、互连界面和烧结压强这四个角度
论文部分内容阅读
随着第三代半导体的发展,工业界对于功率器件的开关频率,电压和功率有更高的要求,这也意味着未来功率器件的封装需要承受更高的工作温度及更大的功率密度。纳米铜材料得益于自身极佳的热电性质,以及纳米材料可低温烧结的特性,研究纳米铜在功率器件封装中的应用具有很大的实用前景和价值。本文针对纳米铜烧结型器件的互连工艺和可靠性这两方面问题进行了研究。第一方面,本文从烧结温度、烧结氛围、互连界面和烧结压强这四个角度对互连工艺进行参数优化,提出了一套纳米铜烧结型器件的互连工艺。在相关试验中,主要有以下几点发现。(1)当烧结温度从240℃升温到300℃时,纳米铜颗粒的烧结程度和焊膏中有机物载体的反应速率会得到提升。当烧结温度在300℃时,可以在避免高温对器件损伤的前提下,实现有效的芯片互连,获得较好的焊层致密度。(2)在烧结过程中H2的参与可以对氧化铜起到不错的还原效果,但是随着浓度的提升,焊层的孔隙率也在逐步增大。当烧结气氛为15%H2和85%Ar时,能获得最优的烧结质量。(3)互连界面的选择是器件能否互连的前提,Ni、Cu和Ag都能使得器件成功互连,互连界面为Cu时,器件的剪切强度达到最大,为12.03MPa。(4)在0-0.52MPa范围内,烧结压强的增加有助于降低焊层在烧结过程中产生的孔隙,器件内部会形成紧密连接。当只在烧结过程中施压0.52MPa时,此时制备的器件的烧结质量最好,剪切强度可以达到11.5MPa。在烧结温度300℃,烧结气氛为15%H2和85%Ar,互连界面为Cu,烧结压强为0.52MPa,施加阶段为烧结阶段的试验条件下,制备出最终成品器件,经过相关试验,验证了该互连工艺的可行性。-第二方面,本文对此工艺下制备的纳米铜烧结型器件进行可靠性研究,研究了焊层孔洞对应力分布的影响。通过有限元仿真建立器件模型,添加热力耦合物理场,进行50周期温度冲击试验。可靠性测试周期为1000周期,每周期时长为1h。接着对器件进行1000周期温度冲击试验。在温度冲击试验过程中,器件的热阻会在0-200周期下降,200-1000周期内逐步上升。结合有限元仿真和孔隙率测试,发现热阻的变化和焊层中的孔隙有关。可靠性试验初期,焊层中的烧结残余应力得到释放,焊层内部结构质量得到提升,之后温度冲击会在焊层中产生新的应力,接头质量随之下降。焊层中的孔隙在可靠性测试中,其周围区域会产生应力集中现象,随着试验周期的增加,孔隙的体积得到生长。焊层中初始孔隙的位置也会对应力的分布造成不同影响,当孔隙在边缘位置时,其对周围焊层的影响要大于中心位置的孔隙。
其他文献
本文主要研究非线性稳态Poisson-Nernst-Planck(PNP)方程的两网格有限元算法.PNP方程是一类偏微分方程耦合系统,用于描述溶质生物分子体系中移动离子的电扩散.本文的研究内容有以下三部分.第一,针对一类非线性稳态的PNP方程,给出了有限元离散形式以及有限元法的H1模误差估计,并用数值实验验证了理论的正确性.第二,针对这类非线性稳态的PNP方程,设计了半解耦和全解耦两类两网格有限元
本文系统研究了基于超出值的合作博弈的解和向量值合作博弈的解及其应用.首先,提出合作博弈基于个人超出值的最小二乘预核仁与核仁求解模型并分析相关性质.进一步,将合作博弈拓展到多维空间,给出了向量值合作博弈一种新的基于超出值的目标规划求解方法.分别给出基于联盟超出值和基于个人超出值的目标规划求解方法,并将其应用于求解多目标线性生产问题和多情况成本分摊问题中.取得的成果如下:一、基于个人超出值建立经典合作
随着电子技术与计算机科学的不断发展,尤其是近年来人们在智能机器人、自动驾驶、导航与制导等领域技术的不断突破,使得图像的获取正发挥着越来越大的作用,在这一背景下、研究对图像的实时采集与高速传输就具有非常迫切的需求。利用FPGA能够进行并行处理数据的特点,本文设计一种基于FPGA的高速图像传输系统设计的方案。本文所做的工作主要有:(1)制定基于FPGA的高速图像传输系统设计方案。通过对现有的方案进行分
近年来,我国面临着错综复杂的国家安全形势,防空的任务愈加繁重,防空预警和反制更加困难,因此,一系列新式地空武器系统开始列装部队,在训练和教学中,若完全采用传统实弹训练方式,不仅不利于针对性的训练和提高,也不符合军费效能最大化利用的实际需求。因此研制配套训练系统,对针对性训练和节省军费开支具有较强的现实意义。在训练过程中,训练操作指令触发和训练成绩的评估均基于飞机目标的检测,针对低空飞机目标,由移动
晶格玻尔兹曼方法(Lattice Boltzmann method,简称LBM)是一种用于计算流体动力学的方法,其最早起源于格子气自动机(Lattice Gas Automate,简称LGA)模型,而后经过几代科研工作者的不断研究与改进最终得到完善。LBM由于天然的并行性、易于实现的边界处理以及较高的计算精度,特别适合当今热门的并行计算领域,这也极大地促进了物理学与计算机科学两门学科的交叉与互融。
随着工业的飞速发展,清洁可再生能源对于可持续发展具有关键性的作用。相变储能材料,其通过相态转变将热能通过潜热的方式进行储存和释放,具有成本低、储热密度高、相变温差较小等优点。然而,有机相变材料大多属于固-液相变材料,其吸热熔融过程中易发生泄漏,并且存在导热系数低和热循环稳定性差等缺点。因此,本文采用多孔碳等作为导热增强基体,通过物理浸渍、静电纺丝等方法制备了一系列新型高性能的复合相变材料,并对其综
权互补问题是由标准互补问题推广得到的,它是一类相对较新的优化问题,可应用于经济学中一些均衡问题.权互补问题主要解决的问题是找到一对属于一个流形与一个锥的交集的向量,使得它们在某个代数中的乘积等于一个给定的权向量.例如,经济领域的Fisher市场均衡问题可以转化为线性权互补模型求解,从而更有效地求解.权互补问题中的非零权向量给权互补问题算法的理论分析带来了更多困难,因此目前关于权互补问题的理论研究成
广泛研究的有机相变材料大多属于固-液相变材料,在储热相变过程中由于材料吸热熔融,容易发生泄漏现象,增加了实际应用的难度。此外,有机固-液相变材料还存在导热性差的缺点,导致材料的热响应速率慢,使其储热效率大大降低。因此,本文采用微胶囊封装、三维多孔基体封装以及接枝聚合制备了三类复合相变材料,所合成的复合相变材料具有优异的储热性能,同时表现出光-热转换性能和较高的导热性能,拓宽了相变材料应用范围。具体
为了保证元器件焊点质量的可靠性,在使用红外热风再流焊设备焊接元器件前,需要设置合理的工艺参数。目前,企业普遍采用多次“测温板试验-工艺参数调整”的方法来确定再流焊工艺参数,不仅需要耗费大量人力、物力及时间成本,一般不具某种最优性,而且对于不能进行多次试验的PCBA(印制电路板组件:Printed Circuit Board Assembly)产品不能应用。因此,针对传统的再流焊接工艺参数设计不足等
船体是由成千上百个钢制构件经过不同程度的装配工序和焊接而成,其中焊接技术在船舶制造过程中扮演极为重要的角色。可见,焊接能力和技术的高低直接影响船体构件的合格程度和一艘船的质量。在船体各种构件和分段的焊接过程中,焊接变形的存在,成为直接影响焊接质量的重要因素。由于焊接是一种高温条件下连接材料的方式,从而会使得焊接材料的物理性能和力学性能在高温发生剧烈的变化,在降低焊接质量,焊缝可靠性和船舶装配质量的