论文部分内容阅读
纳米银颗粒的熔点远小于块体银,可以在较低温度下熔化和烧结,且烧结后的银组织具有与块体银相同的熔点以及相近的电导和热导性能。这一过程表明纳米银颗粒具有在低温加工后可高温服役的特征,因此被广泛地应用于电子制造领域。同时,随着印刷电子技术和柔性电子技术的发展,纳米银颗粒墨水受到越来越广泛的关注。目前,使用高精度印刷设备和纳米银墨水可打印平整的纳米银涂层,然而这需要纳米银墨水、印刷设备和基板间的高度匹配;另外,打印的纳米银涂层还需要通过提高烧结温度、改良烧结方法等途径优化其导电性和弯折性能。但纳米银涂层在生物医疗等领域的应用限制了其烧结温度,甚至需要纳米银涂层在室温条件下烧结并获得性能的优异。因此,本文首先设计了一种能够匹配高精度电子线路打印机的复合纳米银颗粒墨水,提高了纳米银涂层的致密度和性能;在此基础上提出了两种降低纳米银颗粒烧结温度的方法,实现了纳米银墨水在多种基板表面上低温或室温的烧结,且获得了具有优异性能的纳米银涂层。具体研究内容如下:通过混合平均粒径为11.6nm和52.7nm的两种纳米银颗粒制备复合纳米银墨水,通过两种颗粒在烧结动力和孔隙填充方面的互补,提高烧结后纳米银涂层的性能。通过理论推测混合颗粒的平均熔点和计算两种纳米银颗粒堆叠结构的孔隙率,确定了在满足低孔隙率和低熔点的条件下小颗粒质量占比为60%的复合纳米银颗粒为墨水的溶质配方。此外,通过调配纳米银墨水的溶剂配方,并调控与配方对应的打印参数,实现了高精度纳米银涂层的喷印。喷印获得的纳米银涂层性能结果表明:与单一尺寸颗粒烧结涂层相比,60%复合纳米银涂层的烧结组织的孔隙率由35.2%下降至32.2%,电阻率由4.1μΩ·cm下降至3.6μΩ·cm;此外,与单一尺寸颗粒烧结涂层3D形貌的对比表明:复合颗粒墨水可缓解墨滴的咖啡环现象,经多次喷印后可形成均匀的组织和平整的表面,并延长涂层的弯折使用寿命,使其弯折电阻最大增加百分比由47%下降至30%。为了降低纳米银颗粒的烧结温度,论文使用浓度为200m M的Na NO3溶液凝聚纳米银颗粒,利用Na NO3等盐溶液对纳米银颗粒的凝聚和再分散作用,减少纳米银颗粒表面的有机包覆层,从而降低纳米银颗粒的烧结温度。研究纳米银颗粒的粒径随四种电解质溶液浓度的变化规律发现:凝聚速率较慢的纳米银颗粒易于再次被分散;纳米银颗粒在缓慢聚集的过程中其表面有机包覆层脱落的更多更均匀,且在Na NO3溶液中脱落的效果最明显。对比该方法处理前后纳米银颗粒的热流曲线可知,处理后纳米银颗粒的烧结动力不变,烧结起始温度从150℃降低至120℃。处理后纳米银颗粒在120℃烧结温度下获得涂层的电阻率较处理前下降了60%,该方法在一定程度上降低了纳米银颗粒的烧结温度。为了进一步降低纳米银颗粒的烧结温度,论文设计利用部分纳米氧化物颗粒表面羟基对有机物的吸附作用,去除纳米银颗粒表面大部分的有机包覆层,从而实现纳米银颗粒的室温烧结。纳米二氧化硅颗粒和纳米二氧化钛颗粒表面存在的羟基可使溶液中的纳米银颗粒发生剧烈团聚,并引起纳米银颗粒表面有机包覆层的大量脱落。基于上述原理,将纳米氧化物颗粒与聚乙烯醇(PVA)溶液混合后制成纳米氧化物颗粒涂层,在喷印的纳米银墨滴中仍可发生上述过程,使纳米银墨水在涂层上实现室温烧结。此外,PVA的存在使墨水在该涂层表面具有较好的润湿性,使纳米银墨水在有涂层的玻璃、聚对苯二甲酸乙二醇酯(PET)和聚二甲基硅氧烷(PDMS)基板表面无差别的实现高精度的纳米银涂层的室温烧结。基于此方法,纳米银墨水在纳米二氧化硅涂层和纳米二氧化钛涂层表面室温烧结涂层的电阻率分别为3.4μΩ·cm和5.5μΩ·cm,是当前室温烧结研究中的最佳结果。