光学自感应透明介质中的孤子及极端波研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:jhiphop
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
孤子和异常波的新颖动力学研究是非线性科学领域中的前沿课题之一。孤子概念的提出最早可追溯至1834年,其年苏格兰人罗素在爱丁堡附近的运河中首次观察到了波形稳定的水波孤子。其后,特别在20世纪60年代以后,由于激光器的出现、新材料制造技术的成熟以及超快诊断技术的不断涌现,光孤子科学得到了迅猛的发展,并迅速应用于实践中,如远程光纤通信、光存储和全光开关等。广义上讲,异常波(rogue wave)可认为是一种建立在有限背景上的时空双局域孤子,最早由Howell Peregrine博士于1983年求解可积非线性薛定谔(NLS)方程的基阶有理数解时所提出。由于异常波解可以描述现实世界中发生的一类极端波现象(如海洋的疯狗浪、光学调制不稳定性以及金融风暴等),这类有限背景孤子近10多年来得到了广泛的关注,并相继在流体动力学、非线性光学、等离子体物理学、和热学中实验观测到。过去研究表明,光波与二能级谐振介质的相互作用可产生自感应透明(self-induced transparency,SIT)孤子现象,但据我们所知,其中是否允许极端波的产生依然是一个开放的问题。在本文中,我们简单回顾了孤子和异常波的相关概念和研究动态后,深入研究了光学谐振介质中的SIT孤子及其多孤子演化动力学,探讨了在特定条件下的光学极端波产生及其机制。主要工作包括以下两个方面:1)借助达布变换方法,我们给出了sine-Gordon(s G)方程的多个精确孤子解,如扭波解、尖孤子解、简并孤子解以及呼吸子解,演示了它们的多孤子动力学(特别是尖孤子动力学),包括孤子间的碰撞及远区传播特性。由于在完美谐振条件下,二能级谐振介质中的光波传播可用s G模型来描述,因此这些孤子解非常适合描述这类谐振介质中的SIT现象。2)我们从s G方程的一般呼吸子解出发,深入探讨了不同参数条件下呼吸子间的相互作用特性。由于s G方程的解与谐振介质的SIT模型的解存在确切的微分关系,据此我们发现了在特定参数条件下,SIT介质中将允许发生极端波现象,其中心作用区的峰振幅将明显高于周边的波振幅;并且参与相互作用的呼吸子越多,其中心峰振幅就越高。我们借助数值模拟检验了这类极端波的产生,数值结果和解析预测相一致。我们期望这些结果将有助于人们理解或者实验实现光学二能级原子介质中的极端异常波现象。
其他文献
有机-无机杂化化合物同时结合了有机和无机组分各自的优异性能,由于其分子灵活性和多样性而受到广泛关注,同时卤素基取代阳离子对于杂化分子的功能调节具有重要意义。为了探寻更多的可协调的多功能相变材料,我们基于四甲基膦及其卤代衍生物作为阳离子与一系列无机金属阴离子配位成功合成了8种新型的有机-无机杂化化合物:[(CH3)3PCH2F]2[CdBr4](1)、[CH3PCH2Cl][Fe Cl4](2)、[
晶体发生相变时会引起结构的变化,也会使相应的物理性质(如介电性、热力学性质等)在相变温度处发生改变,因而可以广泛应用于数据存储、光子器件、光电子技术、可切换介电器件、生物传感器等。一般是利用有机-无机杂化的方式来构建相变材料,优势是有机胺阳离子与阴离子(金属卤素、无机酸)构成的化合物有良好的结构可控性。本文是基于分子体积稍微大一点的苯乙胺类化合物作为有机部分,通过调控苯乙胺类阳离子、阴离子合成一系
在我国西部盐湖地区,由于较大的温湿度变化和高浓度腐蚀性硫酸盐,半埋混凝土结构往往遭受严重的硫酸盐侵蚀破坏,大大降低其服役寿命。本文设置了砂浆全浸泡和半浸泡在5%的Na2SO4和5%MgSO4溶液中,并设定半浸泡试验温湿度在20℃-80%RH和35℃-30%RH的隔日循环变化,揭示极端环境下水泥砂浆硫酸盐劣化损伤机理,同时研究了各类硫酸盐侵蚀影响因素,探究了砂浆内部氯盐-硫酸盐交互作用机制,以及不同
二维碳材料由于独特的结构,表现出异于其三维块体的物理和化学性能,如优异的力学、电学、光学和热学性能,并在复合材料、电子器件和能源存储等领域具有广阔的应用前景。由于二维碳材料的性能与其原子结构(如键合方式、层数)密切相关,故揭示其对二维碳材料的力学性能与失效机制的作用具有重要意义,然而当前对此研究较为薄弱。针对此问题,本文采用分子动力学方法,以单层与多层二维碳材料(sp2键合的石墨烯(GR),sp2
吸力式沉箱基础可以作为海洋工程张力腿式平台(TLP)的锚固基础。在服役过程中,吸力式沉箱基础不仅受到上部平台结构浮力所产生的竖直单向荷载作用,还会受到风、浪、流等因素所引起的循环荷载作用。循环荷载作用下地基土强度的弱化会降低吸力式沉箱基础的承载力,从而缩短其使用寿命,直接影响上部结构的动力响应与安全性能。为保证浮式结构的稳定性,结合锚固系统受力特性,本文针对静载和循环荷载作用下吸力式沉箱基础在软黏
生物分子参与人体各种生命过程,研究生物分子的检测分析方法对于疾病诊断和治疗具有重要意义。电化学检测是一种新型的检测分析技术,可以实现高效、灵敏、快速和选择性的检测,其中关键环节是电极材料的制造和修饰。本论文基于原子层沉积(atomic layer deposition,ALD)技术完成了复合沉积系统设计和工艺研究,制造了金纳米粒子/二硫化钼/氟掺杂氧化锡导电玻璃(Au NPs/Mo S2/FTO)
相位和偏振是光场非常重要的属性,也是比较难以实现灵活调控的两个自由度。结构光场要求对相位、偏振和振幅等光学自由度在光场截面的空间分布上实现充分的调控,例如涡旋光场和矢量光场等复杂的新型光场。结构光场在超分辨显微镜、光镊技术、激光微加工、信息传输和图像处理等领域有着广泛的应用,这就需要对光场的相位、振幅和偏振等所有属性进行局部的精确控制。具有特殊相位分布的焦散光场因其具有自聚焦、自重构和自愈合等特性
基因表达调控是治疗疾病和遗传性疾病的一项很有前途的技术。现有的基因调控技术大多是不可逆的,但DNA甲基化是可逆的。有一个稳定的载体将甲基转移酶负载到核酸酶中对于DNA甲基化的成功是非常重要的。在这项研究中,我们研究了新的AGO1与DNMT3a3l甲基转移酶的融合,并将其装载到细胞核中,从而实现基因的甲基化。我们鉴定了未甲基化的靶基因并开发了基于AGO的甲基转移酶融合蛋白,研究了其通过靶DNA甲基化
碳纳米管因具有高长径比、高机械强度以及良好的物理化学稳定性等特点而被广泛研究。在真空电子学的研究中,基于碳纳米管的冷阴极技术正不断发展,在具有快速启动、结构紧凑等特点的基础上已逐步实现了大电流密度、高稳定性的电流输出,并逐步被应用在基于冷阴极技术的X射线管、电离真空计等器件的研究当中。但是要使碳纳米管阴极实现在以行波管为代表的微波功率器件上的应用,由于对电子注层流特性要求较高,还需要结合冷阴极的特
颗粒体系是由大量粗颗粒堆积形成,是复杂的多体相互作用体系,呈现出颗粒尺度的结构不均匀和动力学不均匀性的基本特征。颗粒体系的基本特征决定了从基本理论到实验手段上,表征与建立颗粒材料结构与性能的相关性都极其困难。现有测试分析手段所描述的颗粒系统组织结构过于简单化,缺乏对颗粒结构和动力学的真正认识,从而制约了颗粒体系研究的发展。因此,开展颗粒体系结构和动力学性质的测量,是理解和认识颗粒体系重要物理和力学