论文部分内容阅读
不确定性理论分析和算法研究一直是工程界关注的热点,可靠性是处理不确定性的有效途径之一。本文通过区间模型上下界来描述不确定参数,建立非概率可靠性分析模型,在非概率可靠性分析、非概率可靠性优化设计、RC桥梁非概率可靠性分析及加固优化设计进行了深入的理论、算法和工程应用研究,主要内容包括:(1)研究了区间模型的非概率可靠性理论和算法。根据非概率可靠性指标的几何意义,线性功能函数的设计点位于超立方盒的角点,非线性功能函数的设计点位于超立方盒与失效面的切点。据此,线性功能函数,通过区间变量的梯度向量正负来判断设计点位于超立方盒的某一角点的位置,提出了非概率可靠性指标求解的改进一维优化算法;非线性功能函数,提出了子区间优化法和子区间目标性能法。比较分析了非概率可靠性模型和概率可靠性模型,揭示了非概率可靠性指标与概率可靠性指标之间的关系。对比分析了非概率可靠性和与非概率安全系数法,研究表明了两者度量方法的一致性。(2)研究了应力-强度干涉模型的非概率可靠性理论和算法。基于区间可能度的几何意义,非概率集合可靠度表示为结构安全域体积与基本区间变量域的总体积之比。建立了线性功能函数的非概率集合可靠度的表达式;非线性程度不高的功能函数,采用失效面与基本区域交点处线性近似的方法对失效面等效,建立了非概率集合可靠度的计算表达式;对复杂的非线性功能函数,提出了子集子区间法,在子域内抽样,更多的样本点落入失效域,且抽样点均匀分布。分析了非概率集合可靠度的概率度量,证明了非概率集合可靠度在概率意义上是应力和强度在区间内均匀分布的概率可靠度。对比分析了非概率集合可靠度和正态分布区间数、区间截尾分布的可靠度,研究表明非概率集合可靠度更保守。(3)研究了非概率可靠性和非概率可靠度优化设计。根据非概率可靠性指标的几何意义,将非概率可靠性指标约束转化为最小化功能函数值约束,提出了基于子区间的目标性能法,内层优化将非概率可靠性指标的求解转换为寻找所有功能函数最小值,该方法避免了内层非概率可靠性指标求解的双层嵌套优化,迭代次数少,计算效率高。基于非概率可靠性指标的子区间优化法,提出了基于子区间优化法的双层优化设计,内层直接求解非概率可靠性指标,该方法先判断出主动约束,内层只考虑主动约束的非概率可靠性指标,减少了约束条件。线性功能函数非概率可靠性优化是一个单层优化问题,满足非概率可靠性指标约束的不确定参数设计点位于超立方盒的角点,单层非概率可靠性优化模型和不确定参数之间的表达式清晰,计算量小。线性功能函数的非概率集合可靠度是不确定参数的显性函数,引入罚函数将约束优化转化为无约束优化,外层优化设计采用改进粒子群算法得到全局最优解,收敛速度快。基于区间可能度,针对非线性功能函数的非概率集合可靠度,提出了内层采用子区间分析法,外层采用改进粒子群算法的双层优化方法。(4)研究了非概率可靠性分析及优化设计在RC桥梁可靠性评估及加固中的应用。以增大截面法加固钢筋混凝土轴心受压柱为研究对象,对比分析了概率可靠性和非概率可靠性。研究表明:恒载、活载和抗力采用不同的分布类型,在μ和σ相同的情况下,不确定性参数区间[μ-3σ,μ+3σ]内,区间非概率可靠性均比概率可靠性保守,若非概率可靠性评估安全的桥梁构件,概率可靠性评估也安全。根据概率可靠性和非概率可靠性的关系,拟定了桥梁承载能力评估目标非概率可靠性指标和目标非概率可靠度。在目标非概率可靠性指标和目标非概率可靠度优化结果下的钢筋混凝土轴压柱,概率可靠性均满足要求,即满足非概率目标可靠性的轴心受压柱,概率可靠性均满足要求。