论文部分内容阅读
同宿、异宿轨道作为动力系统理论中一类非常有趣的不变集,曾引起了许多专家学者的关注.人们知道Smale马蹄为我们描述了混沌的动力学行为,那么什么会触发混沌由Birkhoff-Smale定理我们知道当一个映射f出现横截同宿点时就意味着出现Smale马蹄,发生混沌运动.因此对同宿、异宿轨道分支的研究能让我们更好的理解复杂的动力学行为.本文主要利用指数二分、Fredholm更替原理、Lyapunove-Schmidt约化来研究几类退化的同宿、异宿轨道的分支问题.全文共分为如下六个章节: 第一章,主要介绍所研究问题的背景、发展状况,最后简单的介绍本文的主要结论和所使用的符号. 第二章,介绍研究问题的主要工具—Melnikov方法、Lyapunov-Schmidt约化、指数二分性.第一节我们详细介绍了利用Melnikov方法处理一平面Hamiltonian系统在周期扰动下的同宿轨保持问题.同时给出了扰动系统的周期映射出现横截同宿点的条件.第二节中我们介绍了利用Lyapunov-Schmidt约化方法在求解一有界线性算子方程过程中是如何降低维数的.第三节中我们详细介绍了有限维与无穷维空间中指数二分性的定义及其在同宿、异宿轨道分支中的应用. 第三章,考虑一个n维自治常微分方程.假设其具有异宿于两个双曲平衡点的异宿轨,且此异宿轨的变分方程具有三个线性无关的有界解,其对偶方程具有两个线性无关的有界解.我们研究了这个退化的异宿轨在周期扰动下的分支问题.利用指数二分性与Lyapunov-Schmidt约化方法我们推导出了一个分支函数.分支函数零点的存在性就对应着未扰动的异宿轨在周期扰动下的异宿轨的保持.分支函数关于参数Taylor展开的低阶项为两个实二次型方程.二次型所对应的实对称矩阵由一些Melnikov型的积分构成.根据实对称矩阵的特征值类型,将二次型方程分为直线型、双曲线型、椭圆型.利用特定的圆旋转及双曲旋转将这两个实对称矩阵同时合同对角化,使得二次型方程化为标准形.在化为标准形的二次型方程中确定出方程具有两个或四个简单零点的条件.应用隐函数定理得出分支函数具有两个或四个零点.即未扰动的退化的异宿轨在周期扰动下会分支出两个或四个异宿轨.同时这些异宿轨的变分方程的有界解只有零解.即扰动方程所对应的周期映射存在两个或四个横截异宿点,因此扰动系统存在两个或四个混沌运动. 第四章,考虑一个具有同宿于双曲平衡点的退化同宿轨的抛物方程.假设沿着同宿轨的变分方程的线性无关的有界解的个数是任意的有限数.我们研究了这个抛物方程在周期扰动下从退化的同宿轨附近分支出周期解的问题.首先应用指数二分性与常数变异公式构造出扰动方程的解.然后利用Fredholm交替定理和Lyapunov-Schmidt约化推导出了满足周期解的条件.即得出分支函数,其定义域及值域都是有限维的空间.分支函数零点的存在性就对应着扰动方程周期解的存在性.在一定的条件下,我们得出扰动方程会从退化的同宿轨附近分支出周期解. 第五章,考虑一特殊形式的快慢系统.设快、慢变量分别为x、y.此特殊形式,通过对慢变量应用平均变化即可化为形如这样的方程.假设未扰动的快系统在xoy面具有一个退化的同宿于双曲平衡点的同宿轨.对于慢系统假设原点为其双曲平衡点.我们研究了这个快慢系统从快变量的退化同宿轨附近分支出周期解的问题.由慢系统的一些双曲性得到扰动后的一个有界解,然后将其带入到快系统中将快慢系统解耦.利用指数二分性与Lyapunov-Schmidt约化方法推导出相应的分支函数.在分支函数零点可解的条件下,得出在附近分支出周期解.同时给出了一个例子来验证我们的结论. 第六章,总结了全文研究的主要结果,并提出本文尚未克服的困难和我们希望进一步考虑的问题.