论文部分内容阅读
为满足航空涡轮发动机叶片以及导向叶片对轻质高强合金板材的需求,对NiAl基合金板材的研发与制备具有十分重要的理论和实际意义。本文以TiB2颗粒增强Al基复合材料板材(TiB2/Al)和纯Ni板材为原料,采用轧制连接及反应合成方法,通过Ni与TiB2/Al中的Al反应生成NiAl基体,同时保留TiB2颗粒作为增强相,成功制备出微层TiB2-NiAl复合材料板材。一方面避免了对于脆性的NiAl基合金锭的直接轧制变形,大大降低了加工成本,另外还克服了传统的叠轧加反应合成制备NiAl基合金板材致密度低的缺陷,并且改善了增强体的强化效果和基体的韧化效果。研究了微层TiB2-NiAl复合材料板的制备工艺,系统的研究了轧制变形和两种反应合成过程中产物的组成、织构演变和反应机理,对微层TiB2-NiAl复合材料板的室温和高温力学性能进行了检测,分析了TiB2颗粒和独特的层状结构对TiB2-NiAl复合材料板的组织与性能影响,并对微层TiB2-NiAl复合材料板的抗氧化行为进行了研究。多层Ni-(TiB2/Al)复合板的轧制试验表明,TiB2/Al复合材料板与纯Ni板有良好的变形协调性。通过对轧制变形后的多层Ni-(TiB2/Al)复合板的微观组织观察,界面结合良好,没有界面反应发生,但在Ni/(TiB2/Al)界面处的Al (Ni)固溶体层内发现了高密度层错。第一种反应合成方法包含了固相法两步退火处理。多层Ni-(TiB2/Al)复合板在650℃反应退火时,有NiAl3和Ni2Al3生成。采用了一个有效形成热模型成功的预测了第一个生成相是NiAl3,和处在Ni/NiAl3内界面的第二个生成相是Ni2Al3。由于Ni/(TiB2/Al)界面高的浓度梯度,最初的NiAl3晶粒呈现出平行的柱状晶结构。然而由于Ni/NiAl3界面相对低的浓度梯度,大部分Ni2Al3晶粒呈现出等轴形貌。TiB2颗粒的添加对NiAl3和Ni2Al3形成和长大都没有显著影响。650℃反应退火时,NiAl3层向TiB2/Al层生长速率高于向Ni层生长速率,原因在于NiAl3相在Al/NiAl3界面形核率更高。NiAl3层生长遵循抛物线生长动力学规律。多层Ni-(TiB2/Al)复合板经过650℃/50h反应退火和再在9501000℃高温反应退火时,各个中间相不断消耗,最终得到层状的TiB2-NiAl复合板。在反应合成过程中TiB2没有参与反应。950℃反应退火时,NiAl层生长遵循抛物线生长动力学模式。由于固相法两步退火处理获得的TiB2-NiAl复合板中存在大量孔洞,难以进行应用。我们开发了新的固液法反应合成工艺。多层Ni-(TiB2/Al)复合板经过1200℃/3h/50MPa的固液反应后,形成微层的TiB2–NiAl复合板。所得复合板材具有独特的单一粗晶NiAl层和富TiB2细晶NiAl层交替排列的结构。反应合成过程中TiB2没有参与反应。粗晶单一NiAl层有明显的{111}<112>和{111}<110>织构组分。这个织构是通过扩散反应从Ni板中的织构遗传得到的。NiAl织构的产生能定性的基于Ni相和NiAl相的密排面位相关系(N–W和K–S)来解释。通过轧制变形及固液反应合成法制备了四种体系(颗粒含量分别为0.7vol.%,1.3vol.%,2vol.%,3.3vol.%)的TiB2-NiAl复合材料板,Al含量控制在51at.%Al52at.%Al之间,随着颗粒含量增加板材致密度略微降低,晶粒尺寸和层厚没有明显变化。纳米硬度分布在9.59.6GPa,弹性模量分布在200210GPa,颗粒含量没有太大影响。随TiB2颗粒的引入,微层TiB2-NiAl复合材料板材断裂韧性增加。且微层TiB2-NiAl复合材料板的断裂韧性与加载方向相关,微层2vol.%TiB2-NiAl复合材料板平行于板材轧制方向加载的断裂韧性为6.9±0.3MPa·m1/2,平行于法线方向加载的断裂韧性达到7.5±0.5MPa·m1/2。裂纹蔓延沿着特定的晶面,接近{110}B2和{100}B2晶面族。富TiB2细晶NiAl层对裂纹扩展起到阻碍作用并使裂纹发生偏转是断裂韧性提高的主要原因。高温拉伸实验表明,随着温度升高,微层TiB2-NiAl复合材料板的抗拉强度、屈服强度先增加后减少,延伸率增加。韧脆转变温度介于750℃和800℃之间。750℃的屈服强度达到最大值为435MPa,延伸率为4.7%。富TiB2层的增强作用和单相NiAl层对裂纹的钝化作用是导致其高温性能高于纯NiAl材料的主要原因。揭示了微层TiB2–NiAl复合材料板材的强化机理。