【摘 要】
:
随着生物技术的发展,DNA的序列信息不但是医疗诊断的靶点,而且能够做为数据信息的载体,在合成生物领域具有重要的作用。链置换反应具有设计灵活、操作简易、成本低等优势,在病原核酸的即时检测、生物计算及存储等医疗诊断、合成生物技术领域具有很好的应用前景。然而,基于链置换反应在应用于生物传感以及DNA文库的扩增方面仍然存在很大的不足,例如在无细胞DNA(cf DNA)的特异性识别以及DNA文库扩增方面缺乏
论文部分内容阅读
随着生物技术的发展,DNA的序列信息不但是医疗诊断的靶点,而且能够做为数据信息的载体,在合成生物领域具有重要的作用。链置换反应具有设计灵活、操作简易、成本低等优势,在病原核酸的即时检测、生物计算及存储等医疗诊断、合成生物技术领域具有很好的应用前景。然而,基于链置换反应在应用于生物传感以及DNA文库的扩增方面仍然存在很大的不足,例如在无细胞DNA(cf DNA)的特异性识别以及DNA文库扩增方面缺乏系统的研究,包括识别的特异性和灵敏度、以及扩增的偏好性和错误率等问题。本文研究了链置换反应的灵敏度、精准度等生化分子机理及特性,设计了链置换探针;同时构建了适用于DNA文库恒温扩增反应,促使DNA材料更好地应用于生物传感和DNA信息存储。通过将toehold引入锁式探针技术构建toehold辅助的锁式探针的新型传感系统,用于ct DNA的精准分型。该系统包括锁式探针和一条阻遏链,通过调整阻遏链和锁式探针的toehold区域,实现了对该传感系统的全新的可控性,抑制了85%的交叉连接、促进了靶标循环、实现了在平均只有29 nt的序列窗口内进行低至0.1%单碱基变异的检测。同时,将dd NTPs引入不平衡PCR体系开发了单引物dd NTPs介导的不对称PCR扩增系统,该富集方法结合toehold辅助的锁式探针可显著提高cf DNA的基因分型,其检测到的突变频率是传统方法的2倍。同时,利用酶介导的链置换扩增技术构建低能耗、低序列偏好性的DNA恒温扩增反应,实现了MB级别数字信息的实用DNA分子存储,这是首次将恒温扩增技术应用于DNA信息存储。i DR实现以可控的方式产生单链或双链DNA产物,且产物的5’端携带磷酸基团。相比传统方法,恒温的扩增方式可节约98%的能源以及降低80%的深度错误。经过10次重复扩增后,相比传统的方法,i DR实现成功解码所需的测序资源减少了70倍。同时,基于“条形码”策略开发了一种经济高效且可扩展的DNA文库均一化方法,DNA文库的均一化结合i DR方法实现了对大型DNA文库更完美的操纵,可节省数百倍的测序资源。综上,本研究基于链置换反应,构建了核酸分子的特异性识别系统和大型DNA文库的富集方法,促进DNA材料在生物传感和信息存储中的应用。
其他文献
铅卤钙钛矿微纳晶体具有较大的比表面积、较高的载流子迁移率和光致发光量子产率,在太阳能电池、发光二极管、光电探测器等诸多光电领域都有着广阔的应用前景。制备表面缺陷少、稳定性好的铅卤钙钛矿微纳晶体,对于抑制非辐射复合,提高载流子传输和制备高质量的光电器件具有重要意义。本论文通过晶面优化、结晶过程优化和组成优化,制备一系列表面缺陷少、光电性能优异、稳定性好的铅卤钙钛矿微纳晶体,并对其结构和光电性能进行研
镁二次电池因金属镁负极具有高体积比能量密度(3833 m Ah cm-3)、低还原电位(-2.3 V vs.SHE)、储量丰富、安全性强等优势,成为“后锂离子时代”最重要的选择之一。然而,在传统有机电解液中金属镁负极表面易形成不导镁离子的钝化层,阻碍镁离子的传输。在镁二次电池发展初期,人们致力于开发新型电解液来缓解此问题。近些年,在镁负极表面构建导镁人工层的策略极具发展潜力,通过该方法可使金属镁负
费托合成反应可以利用合成气(一氧化碳和氢气)制备液体燃料和高附加值化学品,是将非石油碳资源进行清洁高效转化的有效途径之一,大力发展费托合成技术可以缓解石油供需矛盾,为国家能源战略安全提供保障。尽管该技术已经实现了工业化,但在催化剂的设计及机理研究中仍存在一些科学问题,而其中最大的挑战就是费托合成产物选择性的调控。受Anderson-Schulz-Flory分布规律影响,费托合成反应产物的分布范围广
<正>语文是语言和文化的综合科目,是“百科之母”,也是最重要的交际工具,而阅读能力是语文的核心素养,学生阅读能力的培养与提高是语文教学最重要的组成部分。“阅读能力”是一个综合的概念,是集认读、理解、鉴赏、评价与活用等多种能力于一体的综合水平体现[1]。
随着钙钛矿电池效率超过25%,稳定性差成为钙钛矿电池最亟待解决的问题。而钙钛矿表面及内部的大量缺陷是导致钙钛矿电池不稳定的主要因素。本论文从钙钛矿材料缺陷钝化着手,以制备高效稳定的钙钛矿电池。(1)通过甲胺气体处理和新戊胺盐酸盐(NPACl)界面修饰相结合的方式,钝化了甲胺铅溴(MAPb Br3)钙钛矿内部、钙钛矿/空穴传输层(HTL)及钙钛矿/电子传输层(ETL)界面的缺陷。通过这种方式制备的钙
为应用在线近红外光谱分析技术对汽油吸附脱硫(S Zorb)装置物料进行在线分析,基于大量有代表性的S Zorb装置原料汽油和产物脱硫汽油样品,采集其近红外光谱,结合化学计量学方法建立了预测S Zorb装置物料密度、辛烷值、蒸气压、馏程和烃组成的近红外光谱分析模型,模型交互验证结果表明,近红外光谱分析方法与标准方法之间具有良好的一致性。通过配置在线近红外光谱分析系统和应用所建S Zorb装置物料多性
全无机钙钛矿量子点作为一种性能优越的半导体纳米材料,具有高于90%的荧光量子产率,窄的半峰宽和从紫外到近红外光区内可调节的发射光谱,上述优点使其在显示和照明领域有着极为广泛的应用前景。随着钙钛矿量子点及器件制备工艺愈发成熟,材料与器件性能均呈现爆炸式突破,但仍难以满足应用需求。本文以提升钙钛矿量子点材料性能与器件效率为目标,以离子掺杂与界面修饰为解决途径,设计实验,最终获得较为理想的成果。(1)利
固体氧化物燃料电池(SOFCs)能够高效地将化学能直接转化成电能而不受卡诺循环的限制,因此可以有效提高化石能源的能量利用效率。此过程电化学反应的产物主要为水和二氧化碳,极大降低了污染物的排放。Ni基金属陶瓷具有良好的导电性和对燃料优异的催化活性,因而被广泛用作SOFC的阳极材料。然而,当以碳氢化合物为燃料时,其很容易发生积碳,从而导致电池性能下降乃至失活。为提高Ni基阳极催化活性的同时,使其具有增
柴油机凭借其低耗能、强动力和性能稳定等优势在交通运输中占据着主导地位,但其排放的碳烟颗粒(soot)也成为移动源空气污染的重要来源。结合催化燃烧技术的颗粒捕集器(DPF)是目前捕集和消除碳烟颗粒的有效策略,其难点在于如何设计高性能催化剂来降低碳烟的燃烧温度,实现排气温度范围内的DPF再生。由于碳烟的燃烧温度高、颗粒尺寸大(25~100 nm),DPF表面涂覆的粉体催化剂难以和碳烟形成良好接触,限制
大自然进化的过程赋予生物系统精细复杂的结构和独特的功能,在每一个精妙的结构中都蕴含着大自然的智慧。因此仿生材料应运而生,并因其优异的特性受到广泛关注,不断拓展到各种应用领域。然而,目前已开发的仿生功能材料,无论是水凝胶还是药物递送载体,存在的问题是要么结构较简单且功能单一,要么功能较多但结构过于复杂,不利于应用的转化。因此,从基础研究和应用的角度出发,合理设计仿生材料的结构组成,在赋予其生物活性和