基于人类视觉特性的无参考图像质量评价

来源 :天津大学 | 被引量 : 0次 | 上传用户:q2347386
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数字多媒体时代的今天,各种立体图像或视频产品丰富着我们的生活,给我们带来身临其境的立体感。然而在立体图像处理过程中,创建、压缩、传输、重建、渲染和显示这些步骤都难免在原始图像上引入各种失真,导致立体图像或视频质量的下降。质量评价算法能够对立体图像或视频产品的质量进行评估。因此,建立一个准确有效的立体图像质量评价模型在数字多媒体时代显得至关重要。
  本文首先提出了一种基于立体显著性的无参考立体图像质量评价算法。该算法考虑了人类视觉系统特性中的双目视差、双目融合特性、视觉注意机制,利用相应的算法依次生成视差图、融合图,最终得到立体显著图。在图像特征提取算法方面,将图像分解为边缘区和平坦区,利用灰度梯度共生矩阵和Tamura矩阵提取图像的纹理特征。特征映射采用支持向量回归算法,将提取到的特征向量映射到人眼主观质量分数。在LIVE3DⅠ和MCL-3D这两个对称失真立体图像数据库上衡量算法的预测性能,实验结果表明该算法的预测准确性较高,与人眼主观评价有着较高的一致性。
  同时,本文还针对非对称失真立体图像,提出了一种基于奇异值分解的无参考评价算法。该方法首先考虑人眼对空间频率变化敏感的特性和双目融合特性,对立体图像进行Gabor滤波,基于奇异值分解的融合策略生成融合图。然后,采用亮度加权直方图的局部二值模式算法分别对融合图、左右子图像提取特征,并将左右子图像的特征向量融合、采用欧几里得距离和夹角余弦进行向量之间的比较;为度量非对称失真差异,利用图像相似度算法计算左右子图像之间的相似性。最后,将融合图的特征向量、子图像的融合及比较特征向量、子图像的相似度特征向量级联,利用支持向量回归算法完成特征到主观质量分数的回归映射。在LIVE3DⅡ、Waterloo-IVCⅠ和Waterloo-IVCⅡ三个立体图像库上对本算法进行测试。实验结果表明,本算法性能良好,优于目前主流的立体图像质量评价算法。
其他文献
特征选择是维数约简的一种重要手段,其通过保留有效特征,消除无关和冗余特征,从原始特征集中选择一部分特征构成特征子集,从而达到数据降维的目的。然而,现有的一些特征选择算法难以保证在选择过程中同时考虑特征的相关性、冗余性和交互性三方面性质,导致算法的特征选择性能有限。此外,随着深度学习技术的发展,卷积神经网络在各个领域的应用越来越广泛,其常被用于提取图像特征,但大多数特征选择算法针对的都是传统的数据集
随着科学技术的不断发展和提高,立体显示技术被越来越广泛地应用在人们生活工作的各个领域。但是由于当前立体显示技术大多基于立体视差原理,视差所引起的辐辏调节冲突会引起观看立体影像时出现视觉不舒适的现象,降低了观看体验。因此,对于辐辏调节冲突对立体影像视觉舒适度影响的认知研究具有十分重要的意义。  本文首先采用脑电技术对单一视差所引发的视觉舒适度进行研究,提取了视差引起的舒适与否两类脑电信号的特征。将客
机器人技术涵盖众多的学科,包括机械制造、传感器应用和识别、电子技术、自动化与人工智能等。近些年,自动化技术和人工智能技术的不断发展大大推动了机器人技术的进步。根据应用场景不同,可将机器人分为工业机器人、农业机器人、家用机器人、医用机器人等。随着机器人的发展和大范围应用,对机器人智能化的要求越来越高,其中自主导航水平是评价一台机器人智能化的关键指标,而路径规划是机器人导航的重要组成部分。  路径规划
学位
光学乐谱识别作为乐谱内容符号化的关键技术,有助于音乐文件的存储与编辑,在音乐信息检索和计算机辅助教学等领域还有着重要应用价值。基于通用框架的光学乐谱识别算法存在处理步骤较复杂、精度较低等问题,而基于深度学习的算法虽有效地简化了通用框架,但其识别精度有待进一步提升,对于难点音符的识别误差较大,模型训练耗时久。为此本文提出一种改进的卷积循环神经网络光学乐谱识别方法。  本文中提出的光学乐谱识别算法主要
随着科学技术的日新月异及生活方式的改变,人们对位置信息的要求越来越高。在室内环境中,由于建筑物的阻挡等因素,全球导航卫星系统(Global Navigation Satellite System,GNSS)信号会发生衰减,GNSS难以满足人们对室内定位的需求。因此,众多室内定位解决方案层出不穷,其中基于行人航位推算(Pedestrian Dead Reckoning,PDR)理论的室内定位与跟踪技
火灾是人们日常生活中一种频繁发生且危害巨大的灾害事故。随着城市建筑向越来越高和越来越密集的趋势发展,火灾一旦发生,将严重威胁人们的生命财产安全。准确及时地检测到火灾发生对于防火救火具有十分重要的意义。传统的火灾检测技术多基于烟雾、光、热等多种火灾参数传感器来探测火灾,然而其受探测距离、安装位置等多种因素限制,报警速度慢、准确率低。进入21世纪以来,人类社会迈入高度的信息化时代,基于图像型的火灾检测
学位
三维模型技术随着信息技术的迅猛发张取得了广泛的应用,三维模型存在于人们生活的方方面面,例如三维建模、三维重建、3D电影、三维体感游戏和三维医疗等。特别地,得益于已经在各行各业逐渐普及的三维模型拍摄设备,每天都有海量的三维模型被分享到网络平台,相应的产生了大量三维模型数据集。然而,其中只有小部分用于学术研究的数据集具有详细和相对准确的人工标注,大部分三维模型数据库,尤其是用户端三维拍摄设备获取的三维
随着摄像头的广泛铺设和互联网普及,针对室内场景的空岗判定、智慧家居和人流量统计等智能视频分析系统也快速发展,以上功能的实现都要建立在室内人员检测的基础之上。但目前对检测算法的研究主要针对室外行人,室外行人取材场景开阔,数据集中的图片大多采用平行机位拍摄,人体目标较为完整。而室内人员多是俯视拍摄,容易出现家具带来的遮挡问题,且室内人员姿态多样,致使同一个体在不同状态下也会呈现较大差异。这些原因导致主
随着计算机视觉技术的发展,三维模型在该方向的应用越来越广泛。由于三维模型的数量急剧增加,快速实现对三维模型的分类和检索是面临的一个较为棘手的问题。三维模型的表征方法有很多种,其中基于视图的图像表征方法在该领域方面有着很好的表现能力,在多个数据库和比赛中取得良好的成绩。  本文依据图像表征三维模型的方法,介绍基于全景图的三维模型表征方法,主要介绍:(1)提取三维模型的全景图表示三维模型,将网格化的三
物体检测是计算机视觉领域的基础问题之一,在自动驾驶、安全监控等领域有着广泛的应用。当前物体检测主要有两个发展方向,一是通过部署深度网络来实现检测精度的提升,不能保证实时的检测速度;二是通过设计轻量级网络提升检测速度,但检测精度相对较低。目前来看,单阶段物体检测器的检测速度尚可满足实时性的需求,但检测精度低是其相比于双阶段物体检测器的一个缺陷。与此同时,对于自动驾驶、安全监控等领域来说,视觉感知系统