基于微环境响应的磷光铱配合物的制备与疾病诊疗的应用

来源 :深圳大学 | 被引量 : 0次 | 上传用户:hrz2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
铱(Ⅲ)配合物拥有长的磷光寿命、大的斯托克位移、可调的发射波长等性质,被广泛应用于细胞器成像。本文以铱(Ⅲ)配合物为磷光团,利用主配体结构在溶液中的变化情况,来调整铱配合物的光物理和光化学性质。将溶液性质的变化通过光信号的变化进行传导,并通过成像技术观察细胞器在活细胞中的活动。第一章为绪论,简单介绍了细胞器、磷光铱(Ⅲ)配合物的合成及其性质、荧光成像技术、溶酶体和线粒体的作用、结构和性质。介绍了光动力治疗的背景及铱(Ⅲ)配合物作为光动力治疗试剂的应用前景。着重介绍了靶向溶酶体和线粒体的金属配合物的设计思路,和磷光铱(Ⅲ)配合物在细胞溶酶体和线粒体中的应用。最后根据铱(Ⅲ)配合物的研究现状,提出了本论文的研究思路。第二章设计了以双端吡啶基碳链为主配体的三个双核铱配合物和作为对照的单核铱配合物。由于两个铱核间的碳链长度不同,这些双核铱(Ⅲ)配合物在不同粘度的溶液中表现出不同的磷光寿命和磷光强度,磷光寿命和强度的变化与溶液粘度的变化成正相关。其中1在甘油-水体系液体中,其磷光寿命和强度的对数与溶液粘度的对数成线性关系,3同样具有粘度响应能力,但响应精确度远差于1,而以一个C-Cs键连接两个吡啶基的化合物2在紫外灯下几乎看不到磷光强度的变化。将1应用于细胞成像,发现其能定位于溶酶体,利用对肿瘤细胞和正常细胞溶酶体微环境粘度的磷光寿命和强度差异,1可用于区分肿瘤细胞和正常细胞。第三章设计了两对异构的铱(Ⅲ)配合物(Ir1-Ir4),其异构来源于主配体咪唑环上的活泼氢交换,并不可避免地产生异构体。4个铱(Ⅲ)配合物均表现出对溶液不同p H的响应,但Ir1和Ir2拥有更优异p H传感能力。在酸性的缓冲液中,配合物的磷光被抑制,在碱性中可恢复。通过共定位实验和ICP-MS证实,配合物在细胞内定位于线粒体,因Ir1和Ir2具有更低的p Ka(约7.4)和更出色的传感能力,使得Ir1和Ir2可作为靶向线粒体的p H探针,而Ir3和Ir4则因其较大的光毒性,具有作为光动力治疗试剂的潜力。
其他文献
随着我国经济不断的发展,能源问题亟待解决,对环保、可持续发展的新能源开拓早已进入中国能源战略的一部分。波浪能作为海洋能的重要能源之一,蕴藏的能量十分巨大,对波浪能的开发和利用的研究将为新能源的开发迎来机遇。与传统的液压式发电和涡轮式发电技术相比,直驱式发电装置无需引入变速机构,直接利用海浪的垂直运动,将捕获的波浪能转化为电能。此类发电装置不仅能够降低设计的复杂度和成本,同时能够消除由变速机构所带来
随着社会的发展,全球能源需求的大幅度增加和化石能源的大量使用,将导致环境污染和化石能源的枯竭。在全球环境污染和能源危机的情况下,急需绿色和可持续能源技术。与风能、光伏、氢能、海洋能、生物质能、地热能、热能和核能等相比,金属燃料电池和氢氧燃料电池因其低成本和绿色清洁等优势,是有效的储能转换技术。金属燃料电池和氢氧燃料电池涉及一系列电化学过程,主要包括氧还原反应(oxygen reduction re
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)由于具有较高的能量转化率、原料丰富以及绿色环保等优势,近年来得到了快速的发展,并广泛应用于车辆,便携式电子设备等领域。质子交换膜燃料电池在阳极上的反应非常快,但是在阴极上,即使在目前最好的基于Pt的催化剂上,其氧还原反应动力学依然缓慢,并且Pt是一种稀有并且昂贵的金属,因此开发廉价并且高效的非贵金
作为一种可再生能源,波浪能具有储能丰富、开发潜力大、能流密度大和开发价值高等优点,并且与许多其它形式的可再生能源相比,开发成本更低。因此,波浪能的开发对缓解甚至解决当前能源需求迅速增加的问题有着重大意义。尽管有着上述优点,波浪能的开发还是存在许多技术问题。比如,环境随机性强,难以高效进行能量捕获;同时,在海洋环境恶劣的情况下,难以有效自我保护。波浪能发电阵列(Wave-EnergyConverte
随着人类社会的快速发展,能源的需求越来越高。然而,传统化石燃料正逐渐枯竭,并且化石燃料的大量使用也造成一系列的环境污染问题,威胁到生态平衡和人类可持续发展。因此,寻找清洁可再生的新能源已成为解决当前能源危机的重要举措。氢气由于其高能量密度、清洁和可再生的特点,是绿色能源最理想的选择。使用太阳能电解水是生产氢气是一种理想的方案。为了提高电解水的效率,需要足够高效、稳定和廉价的催化剂。电解水反应由阴极
波浪能是一种清洁绿色的可再生能源,有着分布广阔和储量巨大的优点。海洋能源的开发与利用可以优化能源结构,是未来发展的重要战略。波浪能具有较高的功率密度,其平均密度高于其它可再生能源。但由于海浪运动的不平稳性、间歇性与分布不均匀等特点,导致对波浪能的收集和二次利用存在着效率低与利用率不高,进而限制了波浪能行业发展。而微电网的发展推动着各种分布式能源的广泛应用,将波浪能整合到微电网可以大大提高波浪能的利
在农业生产中,除草剂扮演着重要的作用,具有巨大的市场。市面上的除草剂种类众多,但由于大规模的长期使用造成很多杂草对其产生了抗药性。如今很多除草剂已经无法达到理想的除草效果,因此研发不易产生抗药性的除草剂变得尤为重要。原卟啉原氧化酶(PPO)类除草剂具有高效、不易产生抗药性的特性。由于该类除草剂针对的靶标原卟啉原氧化酶是一种光合作用酶,其具有除草谱广、对动物毒性小的特点。由此看来原卟啉原氧化酶抑制剂
碳基/铁化合物复合材料可以作为催化剂应用于电催化还原氧还原反应;且具有可以分别调控Fe基化合物和C基底,增强两者的性能协同等优势。本文以Fe配位化合物为设计起点,调控制备碳基/铁化合物复合材料,并研究其电催化氧还原反应。在调控制备具有良好电催化氧还原性能的碳基/铁化合物复合材料的基础上,将制备得到的碳基/铁化合物复合材料作为正极材料应用到锌-空气电池中。具体研究结果如下:(1)通过简单的软模板方法
Ti3C2Tx是MXenes家族中的重要成员之一,在柔性超级电容器领域具有广阔的应用前景,针对Ti3C2Tx纳米片在制备薄膜电极的过程中容易重新堆叠的问题,本文通过一些方法调控薄膜电极的内部结构来抑制Ti3C2Tx的堆叠,以此保证电极内部电解质离子的快速传输和电极活性表面的充分利用,从而提高基于Ti3C2Tx MXene薄膜电极的比电容,以期推进其在便携式电子产品中的应用。本论文的主要研究内容及结
抗生素的滥用导致多药耐药菌泛滥成灾,耐药菌对人类生命的威胁是一个全球性的健康问题。采用新技术和新策略研发新型抗菌剂是面对这一问题的大势所趋,也是世界医疗卫生领域的热点课题。“惰性”贵金属金由于其在纳米尺度独特的物理化学性质,引起了科研人员的广泛关注.有大量文献报道了金纳米材料在抗菌领域的应用。非抗生素小分子(4,6-Diamino-2-pyrimidinethiol,DAPT)修饰的金纳米颗粒自问