论文部分内容阅读
低温热水辐射供暖技术在民用建筑的冬季供暖中应用很广泛,它相比一般的供暖方式具有两个明显的优势:一是可以利用低温热源,二是能源利用率高。若热源温度降低,必然要求供暖末端具备更高的换热效率。本文提出在民用建筑集中供热系统中应用高效的传热元件——重力式热管强化传热,从而在节约能源的同时又能达到舒适满意的室内供暖效果。本文综合低温热水墙体辐射供暖系统与高效散热元件热管进行研究,并结合热管与新型高导热材料石墨烯对装置进行优化,极大增加墙体散热面积的同时达到一种较好的供暖效果。在实验前进行热管的选型设计,主要对热管的管材、工质等进行选择,使其能够符合本实验的需求。搭建供暖系统实验台,进行热管冷凝段自然冷却实验。通过制作房间模型进行进一步实验,利用提出的热管装置加热50×50cm2的混凝土板块制成的墙体模型,分别在墙内敷设两根和三根热管,并测量房间模型内温度和墙体表面温度。在此实验的基础上开展强化传热实验,通过改变热管之间间距和热源温度两种参数对比传热效果,并加入新型导热材料石墨烯进行优化。当房间内及墙体表面温度达到稳定状态后,对比各组实验的墙体表面平均温度、房间模型内平均温度和各测点温度方差。最后建立将热管用于墙体供暖的模型,进行数值模拟,研究室内温度场的分布情况。研究结果表明:蒸发段长度分别为50mm、80mm、110mm时,50mm的铜-水热管换热性最好;在墙内敷设两根热管无法满足室内所需的温度要求,热管数量加至三根时,墙体表面温度由13.07℃被加热至28.24℃,共升高了 15.2℃。房间模型内的温度由13.11℃加热至23.08℃,共升高了 9.9℃,可以满足室内温度需求;管间距为15cm、热源温度为50℃的方案更优;采用热管与石墨烯结合的供热方式,墙体表面温度达到37.74℃,房间内的温度达到23.41℃。由数据得出(1)墙体表面平均温度比单独热管加热高出0.7℃,提高约2%;(2)房间平均温度高出0.4℃,提高约1.7%。模拟结果表明,除外窗区域,室内温度场分布很均匀,PMV指标也满足人体舒适范围。