论文部分内容阅读
双分子亲核取代反应,又称SN2反应,是有机化学和生物化学中非常重要的一类反应。其中S代表“取代”,N代表“亲核”,2代表反应速率取决于两种反应物分子的浓度。在过去探索SN2反应新机制的动力学研究中,研究者通常采用构建势能面的方法来进行研究。但是,通过构建势能面进行研究存在潜在的问题:首先,反应的动力学计算只能模拟势能面上已经存在的反应路径,包括过渡态,反应物络合物以及产物络合物等驻点的信息。因此,动力学计算只能模拟已存在的反应机制。另外,势能面的构建非常困难,多数势能面并不是全维势能面,这就意味着某些重要的反应路径会被漏掉,无法完全揭示该反应的反应机理。不仅如此,超过7个原子的反应体系的势能面还无法被构建出来,根据势能面方法进行动力学模拟很难描述多原子的反应体系。在我们的研究中,我们使用了一种改进过的从头计算分子动力学方法进行SN2反应的动力学研究。我们使用的方法并不需要提前构建势能面,而是通过一种称为“on the fly”的方式进行动力学模拟。这种模拟的原理是:首先,根据波恩奥本海默近似,我们先固定整个反应体系的原子核,然后通过密度泛函理论计算这个体系的势能部分,根据得到的势能可以计算原子核受到的力,然后运用牛顿力学,具体来说就是速度Verlet算法计算较短时间内原子核的运动。之后重复整个计算过程直至反应结束或者反应不再发生。这样一种计算方式不需要提前构建整个势能面,而是每运动一步就计算一次势能,所以称之为“on the fly”方法。最近的各种研究揭示了双分子亲核取代反应的多种反应机理,使我们对这类反应有了更深刻的理解。但是,以氮原子为中心的SN2反应有待关注和了解。在本篇论文的第三章中,我们通过从头计算分子反应动力学方法揭示出Fˉ+NH2Cl反应的一个新机制:质子转移环绕伴随背后进攻机制(PAR&BAR)。这个新的反应机制涉及到NH2Cl上一个氢原子的解离和NHCl的旋转,并最终以经典的背后进攻方式结束反应。另外,研究者在以碳原子为中心的SN2反应Fˉ+CH3Cl中发现了一种新的双反转机制,我们在以N原子为中心的SN2反应的研究中也发现了双反转机制。与Fˉ+CH3Cl反应的双反转机制不同的是,在Fˉ+NH2Cl反应中双反转的第一次反转是氢键诱导反转,而前者是质子诱导夺取反转。在碰撞能量较低时,新的双反转反应机制提供了一个新的反应通道来防止质子转移的发生。以N原子为中心的SN2反应拥有一个负的反转能垒,而Fˉ+CH3Cl则有一个正的反转势垒,我们据此推测在Fˉ+NH2Cl的反应过程中,双反转过程对反应活性提供了更多贡献。在本篇论文的第四章,我们还报道了一种在Fˉ+CH3Cl反应中的新机制。这种机制与质子转移机制拥有同样的过渡态但是却避开了质子转移的反应通道,它是一种质子环绕与背后进攻机制相结合的反应机理,在之前的研究中从未发现过。值得注意的是,在这个新的机制中存在一个氢键转移的过程,同时涉及到C-H-F和Cl-H-F两个氢键。在较低的碰撞能量下,该机制为质子转移机制提供了一个新的反应通道。这说明对SN2反应机制的探索远没有结束,更多深入探究SN2反应机制的理论和实验研究有待开展,以此来研究多种SN2反应包括水溶液和微溶剂条件下的反应。同时,从头计算分子动力学方法也显示出了巨大的研究潜力,可以尝试用该方法研究包含更多原子的反应体系。我们认为这些在Fˉ+NH2Cl反应中发现的新的反应机制,包括PAR&BAR和新的双反转机制,在含有其他卤代元素的N原子中心的SN2反应(Xˉ+NH2Y[X,Y=F,Cl,Br,I])中也存在。不仅如此,这些新的反应机制可能是SN2反应中普遍存在的机制。但是,我们目前的工作只是探索和发现SN2反应中可能存在的新的反应机制,对不同碰撞能量下的各种反应机制的反应活性没有进行定量的研究。更多的工作需要投入到对SN2反应机制中去,尤其是气相下和液相下的PAR&BAR机制。另外,N中心原子的SN2反应的动力学量也需要更多的研究工作去探索。