论文部分内容阅读
低碳节能脱氮一直是污水处理的研究难点之一。传统的脱氮工艺已经无法满足低C/N比的废水处理的一级A排放要求,针对此类废水的特点,基于沸石序批式反应器(SBR)亚硝化-厌氧氨氧化耦合反硝化脱氮工艺,不仅能够脱除废水中有机物,同时还能提高整体工艺的脱氮效率。然而,如何实现稳定亚硝化,控制有机物对厌氧氨氧化耦合反硝化的脱氮影响,是本研究面对的两个重点。本研究以实验室规模的沸石SBR和上流式厌氧过滤床反应器(UBF)分别启动运行亚硝化和厌氧氨氧化耦合反硝化。探究各级反应器的运行控制策略以及微生物群落结构特征演替规律,并将两级反应器串联后处理低C/N废水,研究其处理效能和工艺条件,以期为组合工艺的推广应用提供理论基础和技术支持。首先,本课题考察了碱度比,沸石氨氮吸附容量,C/N比对沸石SBR实现亚硝化的影响,并深入探究了沸石SBR实现亚硝化的作用机制。结果表明,基于沸石对氨氮的吸附解吸平衡,反应器内氨氮得以维持一定浓度,从而为反应器提供了适宜的游离氨(FA)浓度。通过控制FA浓度,富集了氨氧化菌(AOB),选择性地抑制了亚硝酸盐氧化菌(NOB),最终实现了反应器内稳定亚硝化。单因素试验表明,碱度比为5:1时,沸石SBR中亚硝态氮产率(NPR)达到最高值1.1 kgN/(m3·d);沸石对氨氮的吸附容量越大,反应器的NPR越大,亚硝态氮的积累浓度越高;溶解氧充足的情况下,低浓度有机物对反应器内亚硝化影响不大;通过高通量技术发现,反应器内的AOB在属水平上有较高的相对丰度,NOB的相对丰度几乎检测不到,这是保障亚硝化的关键因素。其次,在已富集厌氧氨氧化菌的UBF反应器中投加有机物,考察不同进水C/N比对UBF内厌氧氨氧化耦合反硝化脱氮性能影响,并结合热力学分析耦合系统内各反应的吉布斯自由能(?′8))变化。结果发现:进水C/N为2.5时,耦合系统的脱氮效率最高,总氮(TN)去除率达到96%;此阶段下,反应器内厌氧氨氧化的?′8)低于反硝化?′8),厌氧氨氧化反应更容易发生,厌氧氨氧化反应的脱氮贡献率为75.8%。当C/N比值上升到3.5时,反应器内TN去除率下降,厌氧氨氧化的?′8)上升并高于反硝化?′8),导致耦合系统内的反硝化开始占据主导地位。高通量和qPCR分子生物技术发现,anammox菌和反硝化菌共存在同一反应器中;C/N比为2.5时,anammox菌的数量为1.58×107拷贝数/ul DNA,高于其他进水条件下的数量值。最后,对沸石SBR进行调试运行25天,使其出水水质满足厌氧氨氧化耦合反硝化进水要求。第26天开始将两级反应器串联,探讨组合工艺对低C/N废水的脱氮性能。研究发现,当进水NH4+-N为300 mg/L左右,COD为600 mg/L左右时,组合反应器出水中的NH4+-N、COD分别降到2 mg/L、41 mg/L,且主要的脱氮除碳是在UBF反应器中完成的,其相应的TN和COD去除率分别为66.5±4.5%、71.8±4.9%。