论文部分内容阅读
随着网络科学的快速发展,网络成为了描述复杂系统内部个体之间相互作用关系的重要方法,现实生活中许多复杂系统都可以通过复杂网络建模进行分析。另一方面,通过对复杂网络上的各种演化动力学过程的研究,人们可以深入地理解存在于自然界和现实社会系统中的诸多复杂现象,如自私个体之间合作行为的自发涌现,社会网络上舆论的形成与传播,自然界中广泛存在的同步现象等。因此,作为复杂网络研究领域的重要研究方向,复杂网络上的演化动力学,如演化博弈动力学、观点动力学以及耦合相振子系统等,得到了非常广泛的关注和研究。在本论文中,基于复杂网络上的演化博弈与观点动力学,我们分别对复杂网络上的合作演化以及群体观点演化问题做了进一步的研究和探索。本文的主要研究工作如下:对于复杂网络上的演化博弈动力学研究。(1)我们在演化囚徒困境博弈动力学模型中引入了策略坚持,研究了策略坚持机制对网络中群体合作演化的影响。我们发现,无论在何种网络结构下,策略坚持的引入都能够极大地促进群体合作;在异质网络上,考虑群体中个体具有不同策略坚持周期时,具有更大策略坚持周期的个体比具有小的策略坚持周期的个体更倾向于选择合作;此外,影响力大的节点具有更高的策略坚持水平更有利于群体维持合作行为。(2)基于ER随机网络和BA无标度网络,我们研究了空间演化博弈中基于节点度差异的偏好选择对系统合作演化的影响。研究结果表明,无论在ER随机网络或者BA无标度网络上,当个体倾向于选择与自身度差异较小邻居进行策略模仿时,此偏好选择将会损害合作。相反,当博弈个体倾向于选择与其节点度差异大的邻居进行策略学习时,在很大偏好参数范围内能够促进群体合作,并且存在最优的偏好选择强度使得系统产生最高的合作水平。(3)我们提出了具有非对称相互作用和策略学习环境的双层网络上的公共物品博弈模型,研究了相互作用网络和策略学习网络连边重叠比例对系统合作演化的影响。我们的数值模拟结果表明,网络连边重叠比例ω对系统合作演化的影响取决于收益增益因子r。当r较小时,相互作用和策略学习环境之间更高的重叠程度对合作行为更有利。然而,对于相对较大的r,情况恰好相反,此时相互作用网络和策略学习网络之间较低的连边重叠比例能够使得系统具有更高的合作水平。对于复杂网络上的观点动力学研究。我们研究了异质收敛参数对于Deffuant模型中群体观点演化达成一致的影响。在有界置信水平内,进行观点交互的两个个体之间观点的收敛参数取决于可调参数κ以及他们之间的观点差异大小。当两个个体进行观点交互时,大的κ和大的观点差异都将导致两个个体之间观点收敛速度变慢。数值模拟结果表明,当可调参数κ增大时,能够降低系统达到完全一致的有界置信阈值,并且存在最优的κ使得系统具有最小的有界置信阈值。这意味着适当降低个体观点交互的收敛比率有利于促使群体观点达成一致。