AG-群胚的结构性质及其推广

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:lw3202004012
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The main motivation behind our work is to study different structural properties of a non-associative structure called an Abel-Grassmann’s groupoid (briefly an AG-groupoid) as it hasn’t attracted much attention compared to associative structures. It is often important to use the behavior and character of one algebraic structure to study another for the sake of having more and better informative results. This thesis consists of several problems in the theory of AG-groupoids with the common feature that they are all best tackled using semi-group theory.The thesis comprises seven chapters. The first chapter contains a brief history and com-parison of semigroups and AG-groupoids. Further, we have established several conditions for an AG-groupoid to become a semigroup (commutative semigroup, commutative monoid). We have also generated AG-groupoids from some abelian groups.In chapter 2, the concept of soft inverses in an AG**-groupoid is introduced. The system known as partially inverse AG**-groupoid has been defined. Some basic properties of par-tially inverse AG**-groupoids are investigated. In particular, AG**-groupoids whose idem-potents form a semilattice or a rectangular band are studied. Some special congruences on partially inverse AG**-groupoids are considered, such as unitary congruences and idempo-tent separating congruences. We have studied separative commutative image and maximal anti-separative commutative image of a locally associative AG**-groupoid.In chapter 3, we have given a new definition for a completely inverse AG**-groupoid and characterized it by using strong inverses. We have looked at the problems of finding some useful results for a completely inverse AG**-groupoid. We have established a condi-tion to connect a completely inverse AG**-groupoid with sandwich sets. We have defined a natural partial order relation on the set of idempotents E of an AG**-groupoid and find a greatest lower bound of E. We have also introduced the concept of a completely AMnverse AG**-groupoid and studied some of the fundamental properties. Furthermore, we have in-vestigated the maximum idempotent separating congruence in a completely N-inverse AG**-groupoid.In chapter 4, we have shown that the concepts of strongly regular and intra-regular classes coincide in a unitary AG-groupoid. Further, we have shown that every strongly regular element of an AG**-groupoid has a strong inverse. We have provided a condition for a strongly regular AG-groupoid to become an AG**-groupoid. We have characterized a strongly regular AG-groupoid in terms of left (right) ideals. We have also investigated some useful properties of a completely regular AG-groupoid.In chapter 5, we have introduced the concept of (m, n)-ideals in an ordered AG-groupoid. We have characterized (0,2)-ideals and (1,2)-ideals of an ordered AG-groupoid in term of left ideals. The results obtained extend the results on an AG-groupoid without order.In chapter 6, we have given the concept of pure left identity and studied an (m, n)-regular class of an AG-hypergroupoid. We have also characterized an AG-hypergroupoid. Further, we have given the connection of ordered and hyper theories of an AG-groupoid.In chapter 7, we have shown that a Γ-AG-groupoid with left identity becomes an AG-groupoid with left identity. Finally, we have also given a method to construct Γ-AG-groupoid.
其他文献
过去的二十年间,低维拓扑引起了人们的很多注意,在该领域中一些新的不变量被引入进来,比如链环和扭结的琼斯和HOMFLY多项式。在这些重要的不变量之中,扭结和链环的霍万诺夫同调是在文献中被研究最多的不变量。霍万诺夫在他的著名文章“琼斯多项式的范畴化”中定义了这种不变量,现在这种不变量被称为霍万诺夫同调。对每一个链环L,霍万诺夫都联系一个带有(1,0)度数的线性微分算子的双阶化链复形Cr,s(L)。链环
在我们的前期工作中筛选到一个耐旱突变体,命名为edt1 (enhanced drought tolerance 1) 。该突变体具有比野生型拟南芥更发达的根系,包括更长的主根和更多的侧根。这些表型的获得都是源于HD-ZIP转录因子家族第四亚家族的AtHDG11基因的过量表达。edtI很可能有其特有的根系发育模式,但是具体的分子机制仍然不清楚。通过对该突变体的根系转录组分析,我们发现细胞壁相关基因、
本论文主要研究了子群的广义拟正规性,嵌入性以及部分S-Ⅱ-性质与有限群的结构.本论文涉及的群均是有限群.全文共分为五章.第一章介绍了本论文的研究背景和所取得的成果.第二章给出了本论文中常用的符号,概念和一些已知的有用结果.第三章研究子群的广义拟正规性与有限群的结构.在第一节,我们介绍了弱Ss-拟正规子群的概念,通过研究群G的Sylow子群的极大子群和极小子群的弱Ss-拟正规性给出了群G是p-幂零群
在水处理过程中,混凝沉淀工艺可有效去除水中悬浮杂质与有害物质,混凝剂投加量的及时调整可以保障混凝沉淀工艺出水水质的稳定性。然而,受到原水水质指标(如:原水浊度、水温、p H值、溶解氧、耗氧量等)和进水流量变化的影响,特别是原水水质变化具有周期性、季节性、随机性以及时变性,给混凝剂投加控制带来了很大的困难。充分挖掘原水水质众多指标参数变化的大数据信息,为混凝剂投加控制提供原水水质变化的实时参考,可以
量子系统的相干操纵在量子信息处理和精密测量领域有着重要的应用,是当代基础科学和工程技术的重大挑战。固态量子系统如氮-空位缺陷,量子点,超导器件都是最有希望实现实用量子计算的系统。同时,最近微纳机械振子引起了研究人员的广泛兴趣。主要是因为机械振子超长的相干时间以及利用纳米加工技术很容易和固态量子体系集成在一起。机械振子和固态自旋的耦合系统的优势在于(1)机械振子可以作为探针为固态自旋量子态的读出提供
教育部印发了《关于大力推进幼儿园与小学科学衔接的指导意见》,其中专门指出国家课程要以游戏化、生活化、综合化等方式实施,在此背景下教学的方式肯定要发生变化,其中把游戏引入课堂以及幼儿园一直推行的课程游戏化,是幼小科学衔接的重点之一。本文以一次幼小衔接推进会上的语文、数学、美术三节课为例,呈现国家课程游戏化实施,探索幼小衔接背景下课堂教学方式的变革。
金属-绝缘体相变现象一直是凝聚态物理中倍受关注的热点和研究重点。在众多金属-绝缘体相变材料中,钙钛矿型稀土过渡金属氧化物RNiO3(R稀土元素,R≠La)由于具有明显的温度驱动的金属-绝缘体相变,使其在开关、传感器和热致变色器件等方面具有重要的潜在应用价值,吸引了人们的强烈关注。但RNiO3体系的相变温度均不在室温附近,将其调节到室温附近对于实际器件应用非常重要。因此,研究RNiO3体系的相变温度
超导作为一种新奇的宏观量子现象,自从被发现开始,就成为凝聚态物理学研究中的热点之一,超导电性以其独特的魅力持续不断地吸引着实验和理论科学家的关注。铜氧高温超导体的发现,更是将非常规超导的探索和机理研究推向整个凝聚态物理学领域研究的最前沿。时至今日,寻找超导转变温度更高的超导体和理论上解答高温超导电性的机理仍然是凝聚态物理学研究中最重要的问题之一。角分辨光电子能谱(ARPES)技术由于可以直观的探测
在个人成长过程中,手机已经成为一个每天陪伴人们新的‘感官’,越来越多的人倾向于使用手机作为移动终端,分享日常生活、交流生活感受、认知新鲜事物。手机,凭借其巨大的媒介影响力和传播力,在一定程度上改变了包括人与人、人与技术、人与信息等在内的各种关系,甚至,它也改变了个体感知和学习的模式,使生活、学习、娱乐、运动、休闲以及信息传播的路径等更加多元。智能手机类似于小型电脑,其便捷性、多功能性等优势使人沉溺
大气重力波在向上传播过程中能够不断向背景大气传递动量和能量,被认为是中低层大气耦合过程中最重要的物理过程。强对流又是激发大气重力波的最重要的波源之一,特别是在热带地区。最近的研究表明,强对流系统中的非绝热力和对流过冲过程能够在大的时间和空间尺度上激发广谱重力波。在西北太平洋区域形成的台风(或者说南太平洋区域的热带气旋)是一种大尺度强对流系统,能够激发出波长达几百公里、周期达数小时的对流重力波。台风