论文部分内容阅读
负荷预测的准确程度对于电力系统安全经济运行具有十分重要的作用。论文针对南京地区电力系统负荷数据采用小波变换和神经网络进行短期负荷预测,取得了一些成果。本文首先对负荷数据的特性进行分析,明确了负荷序列具有特定的规律性。然后利用自组织映射网络(SOM)对负荷序列进行分类,可将一周负荷分为四种负荷类型。同时应用小波分解的时频暂态分析特性,通过使用Mallat算法,将负荷序列进行小波分解,再根据各分量的特点构造神经网络模型对其进行预测,为增加神经网络的收敛速度及稳定性,在神经网络训练过程中采用了LM算法。为了获得较小的网络规模,取得较快的训练速度及较高的预测精度,在本文中对各序列分别采用一组神经网络,每个时间点分别建立一个网络进行预测。最后通过小波重构各分量预测结果得到最终预测结果。此外,对基于小波理论的异常数据处理方法进行了详细地介绍和实验仿真。通过对南京地区电力负荷数据的实验结果表明,较之考虑天气因素和日类型的人工神经网络方法(ANN)预测方法,采用本文所提出的模型有较高的预测精度与较强的适应性。该方法对其他的时间序列预测问题(如产品价格、国际原油价格预测等)也具有较高的参考价值和指导意义。