论文部分内容阅读
极化合成孔径雷达(Pol-SAR)是一个全天候,多通道,多参数的雷达成像系统,它可以获得一定波长和视角下目标的极化散射信息。和合成孔径雷达(SAR)比较,极化SAR拥有更丰富的极化内容,再加上极化SAR数据具有高维性,并且数据相对较复杂,如何结合现有的技术对极化SAR数据进行高效、准确的分类已成为极化SAR领域的研究热点。为了克服传统的分类方法时间复杂度过高的问题,本文提出了基于支持向量的聚类方法。由于极化SAR存在着较大的相干斑噪声,对后续的分类产生了极大的影响,所以本文根据相干斑噪声模型,提出了利用面向对象的方法对极化SAR进行分类,其主要工作如下:(1).本文提出了基于面向对象和SVM的极化SAR分类方法。传统的SVM分类精度高,速度快,但是其分类极化SAR时易受相干斑噪声影响、分类杂点较多,本文将基于像素的极化SAR分类和基于区域的极化SAR分类方法进行了有效的结合,首先将极化SAR数据的相干矩阵T利用SVM进行分类得到初始分类,然后将极化SAR数据的Pauli特征利用面向对象的方法进行过分割,最后在过分割的图像上对SVM的初始分类结果利用投票的方式进行二次分类,从而得到最终结果。由于该方法有效的利用了极化SAR数据的散射以及空间信息,所以具有不受相干斑噪声影响,边缘保持好,准确率高等优点。(2).本文提出了基于面向对象和谱聚类的极化SAR分类方法。传统的面向对象的方法可以对图像进行过分割,但是过分割后如何高效的融合是一个问题。谱聚类可以对极化数据进行很好的分类,但是当数据量大时,时间复杂度高,容易造成内存溢出。本文提出的方法首先利用面向对象的方法将极化SAR数据进行过分割,从而起到降维的目的,然后将过分割后的图像的每一个单元块当做一个对象,然后对这些对象进行谱聚类,最后将图像以对象为基本单元进行分类。由于该方法利用面向对象的方法对极化SAR进行了降维,所以时间复杂度大大降低,又因为是以对象为单元进行聚类,所以很好的克服了噪声的影响。(3).本文提出了基于支持向量积和谱聚类的极化SAR分类方法。谱聚类是以谱图理论为基础的,和传统的聚类方法比,它有着很多优点,比如在任意的样本空间都可以聚类并且能收敛于全局最优解、对不规则数据不敏感、准确率高等。但极化SAR数据量通常很大,直接求解其相似度矩阵不可行。所以本文提出了先降维后聚类的方法。首先选择少量样本,对其利用快速SVM进行训练,从而得到其支持向量,然后利用谱聚类对支持向量进行聚类,并计算出相应的类心,最后计算剩余样本到各个类心的距离并进行分类。和SVM类比,该方法可以有效的提高分类准确率,并解决了谱聚类中数据量过大,内存容易溢出和计算复杂度过高的问题。