论文部分内容阅读
本文主要讨论了某些不连续微分方程的Lyapunov不等式及比较定理,全文共六章. 第一章为绪论部分.简述了常微分方程的Lyapunov不等式和不连续微分方程的Lyapunov不等式的历史背景和研究现状,及本文的主要工作. 第二章研究了一类具有阻尼项的二阶线性脉冲微分系统的Lyapunov不等式.首先分类讨论了两种不同的脉冲扰动情形,再提供了一个说明文章结果的实际例子. 第三章研究了另一类二阶线性脉冲微分系统Dirichlet边值问题的Lyapunov不等式.利用Holder不等式和Riccati变换,探讨出有关此类脉冲微分系统的Lyapunov不等式,并且分类讨论了两种脉冲微分系统的Lyapunov不等式之间的联系. 第四章研究了Hill方程在脉冲量akcx(tk)+bkx(tk)形式下的Lyapunov不等式.主要是釆用格林公式和引入范数的方法,讨论了此类脉冲微分方程的Lyapunov不等式,提供了一个说明文章结果的实际例子,应用MATLAB进行模拟. 第五章研究了二阶线性脉冲微分方程的比较定理.在原有二阶常微分方程方程比较定理的基础上,通过添加脉冲条件并且引入新方法,使得脉冲方程比较定理更具备普遍性. 第六章总结了全文的内容以及本文不足之处,并对进一步的研究工作有一些展望.