论文部分内容阅读
对于接地装置的冲击特性来说,衡量接地装置电气性能的重要指标是冲击接地电阻,而对冲击接地电阻的研究首先是需要对接地装置所处位置的土壤结构以及接地装置自身的材料进行分析。在现有的研究中,对土壤结构的测量主要是在工频下进行的,反映的是常值土壤电阻率的情况。但是,当雷电流散入土壤中时,会造成土壤参数的变化,此时的土壤参数并不是一个常数定值,而是会随着注入电流频率的变化而变化的。另外对接地体的计算主要集中于圆柱形接地体,而现在越来越多的接地体会采用扁形或者是其他形状。因此,研究土壤参数的频变特性和不同接地体的电气特性就具有重要的意义。针对上述问题,本文拟从实验和建模计算两方面入手来开展系统的研究工作,具体落实在以下诸方面。建立一套土壤参数频变特性实验系统,包括变频电源、接地棒和测量模块,该系统可以测量不同频率点下的土壤参数。利用矩量法来计算测量引线之间的干扰,分析系统中的电容、电感对测量结果的影响,并考虑了实际布线中的不同影响因素。实验表明,土壤参数会表现出明显的频变特性,这是其与传统的土壤参数测量的主要区别。根据测量得到的土壤参数,运用MATLAB编写了程序,来反演得到了实际的土壤结构。实验及反演结果发现,随着频率的增加,土壤电阻率和相对介电常数均会有不同程度的减小。根据现有不同接地体的类型,首先对圆柱形接地体的阻抗频率特性进行了理论计算,然后搭建了接地体的电磁场仿真模型,该模型通过对空间进行离散化处理可以同时计及集肤效应等效应,然后计算出不同接地体的阻抗频率特性。通过与本文中的理论计算模型进行对比,验证了该模型的准确性。计算结果表明,扁带形接地体相对于同等横截面积的圆柱形接地材料,在高频下由于集肤效应的影响其自身的阻抗较小。对变电站和杆塔接地装置的冲击特性进行了分析,分别对独立避雷针和构架避雷针与变电站接地网的冲击特性及优化措施进行了研究。并且针对杆塔接地装置的降阻措施提出了两种新方法,并对这两种方法进行了可行性分析。最后,基于户外的真型接地网,进行了接地网冲击接地电阻的测量、地网各点电位分布和地网的散流等方面的分析,分析了不同雷电流影响下接地网冲击电阻的变化,波形越陡,冲击接地电阻就会越大。