论文部分内容阅读
碳化硼(B4C)陶瓷由于具有密度低、熔点高、硬度高、耐高温、耐腐蚀、耐磨损性及良好的中子吸收性能等特性,因而在航空航天、军工防护、陶瓷刀具、耐磨耐蚀部件等方面均具有广泛的用途。但是由于B4C陶瓷断裂韧性低(<2.2 MPa·m1/2)和难以烧结的缺陷大大限制了B4C陶瓷的推广和应用。本文以提高材料的断裂韧性为目标,通过无压预烧和真空渗铝相结合的方法分别制备了B4C-Al、B4C-Al2O3-Al、B4C-TiB2-Al和B4C-ZrB2-Al复合材料,对材料的制备工艺、力学性能、物相组成、微观结构和补强增韧机理进行了系统的研究。结果表明:(1)不同体系的复合材料,其制备工艺不同。B4C-Al、B4C-Al2O3-Al、B4C-TiB2-Al、B4C-ZrB2-Al等复合材料所对应的预烧体的烧结工艺分别为2000℃×30 min(真空)、1900℃×30 min(真空)、1200℃×60 min(真空)+2050℃×30 min(氩气)和1400℃×60 min(真空)+1950℃×30 min(氩气)。复合材料的渗铝工艺均为1100℃×120 min(真空)。(2)在渗铝过程中,B4C和Al之间的反应产物为AlB2和Al3BC,直接添加Al2O3第二相并不能改变B4C和Al之间的反应产物。但是利用原位反应引入第二相(TiB2和ZrB2)则能够有效地改变B4C和Al之间的反应产物。原位引入TiB2后B4C和Al之间的反应产物只有Al3BC;原位引入ZrB2时,随着ZrB2含量的增加,反应产物由Al3BC、AlB12C2和Al8B4C7逐渐转变为AlB12C2和Al8B4C7,而当ZrB2含量为35%(质量分数)时,B4C和Al之间几乎没有发生反应。(3)各体系复合材料预烧体中均有较高的气孔率,这些开口的孔隙相互之间形成了相互贯通的三维网状结构,为真空渗铝时金属铝的渗入提供了通道。渗铝后所有复合材料的致密度均较高,当细颗粒B4C或第二相的含量较高时,晶粒均有不同程度的细化。(4)对于颗粒配比的B4C-Al复合材料,随着细颗粒B4C含量的增加,复合材料的硬度逐渐降低,抗折强度逐渐增大,断裂韧性基本呈增大的趋势,当细颗粒B4C含量为40%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.08%、71.7、506 MPa和6.4 MPa·m1/2。对于B4C-Al2O3-Al复合材料,随着Al2O3添加量的增加,复合材料的硬度呈现先增大后降低的变化规律,抗折强度和断裂韧性均呈现先减小后增大的变化规律,当Al2O3添加量为25%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为2.06%,84.4,440 MPa和6.6 MPa·m1/2。对于B4C-TiB2-Al复合材料,随着TiB2含量增加,复合材料的硬度逐渐降低,抗折强度逐渐增大,断裂韧性基本呈增大的趋势。当TiB2含量为40%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.32%、80.3、560 MPa和7.8 MPa·m1/2。对于B4C-ZrB2-Al复合材料,随着ZrB2含量增加,复合材料的硬度先增大后降低,抗折强度和断裂韧性均呈现先降低后增大的趋势,当ZrB2含量为35%(质量分数)时,复合材料具有较好的综合性能,材料的气孔率、硬度HRA、抗折强度和断裂韧性分别为1.06%、82.2、522 MPa和8.6 MPa·m1/2。(5)延性铝的加入是材料断裂韧性提高的主要原因。此外,对于B4C-Al复合材料,细颗粒B4C含量的增加也是提高材料断裂韧性的有利因素;对于添加第二相的B4C-Al复合材料,第二相粒子与B4C基体的热膨胀的不匹配及晶粒的细化也能有效地提高材料的断裂韧性。(6)复合材料的断裂方式主要为穿晶和沿晶混合断裂,由于延性Al的渗入,复合材料的断口中存在金属撕裂棱的特征,且随着Al渗入量的增加,金属撕裂棱和韧窝的比例增加。