论文部分内容阅读
从19世纪开始,数学、物理和工程技术中的许多问题大都归结为求解不同类型的奇异积分、奇异积分算子和奇异积分方程。19世纪末20世纪初Volterra和Fredholm的开创性工作主导了20世纪分析学发展的主要方向。Hilbert在Freholm工作的启发下,定义了Hilbert空间,这为以后的理论分析提供了强有力的工具。积分方程经过20世纪大力发展,如今科学和工程中的诸多问题都可用积分方程或积分-微分方程来描述。例如,油气勘探、医学扫描、材料探伤和参数识别问题,通常可借助声波、放射线等穿透物体后,根据吸收到的信息寻求物体的密度。带记忆材料的热传导问题可归结为求解Volterra型积分-微分方程。许多带有初、边值条件的偏微分方程可通过直接或者间接方法转化为第一类或第二类边界积分方程来求解。从计算数学角度看,处理积分方程要比微分方程更复杂,主要表现在:第一,离散矩阵为满秩矩阵,计算满秩矩阵的复杂度是未知数个数的立方阶。第二,满秩矩阵的每个元素都是通过计算积分而得到,所以生成离散矩阵的计算量可能会超过计算问题本身。本文研究的是多维甚至是带有奇异核的积分或积分方程,这都使得问题求解的难度和复杂度增大,从而使许多对一维连续核问题行之有效的数值方法推广到多维时失去其原有的优势。因此,本文以提出高效数值算法为目的,从以下四个方面进行研究。1.本文首先研究乘积型端点弱奇异积分的数值计算方法,推导出对应于所用求积公式的多步长误差渐近展开式。进一步,我们又分别给出二维乘积型含参弱奇异积分和多维乘积型含参弱奇异积分的求积公式与其对应的误差多参数渐近展开式。然后,根据误差展开式构造外推和分裂外推算法来加速收敛。该算法通过逐次消去误差展开式中的低阶项来达到提高数值解的精度和收敛阶的目的。与单步长展开式不同,本文推导的误差渐近展开式是多步长的,可以在各个方向分别离散,然后通过线性组合来加速收敛。本文提出的算法是一种高度并行算法,可以有效解决维数过高而引起计算量大的问题。2.本文给出求解二维非线性Volterra型积分方程的迭代Nystr?m法。Nystr?m法可以避免计算积分,从而降低计算量;外推法可提高数值解的精度和收敛阶。本文提出的方法结合了Nystr?m法和外推算法的优势。我们首先推广得到二维Gronwall不等式,并利用Gronwall不等式证明了原方程解的存在唯一性。算法过程是:首先,将方程中的积分项用给定的求积公式代替;其次,代入配置点并通过迭代方法计算出该点的数值解;然后,通过执行外推算法来进一步提高数值解的精度和收敛阶。为了分析离散方程解的存在唯一性,本文又进一步推广得到二维离散形式的Gronwall不等式,同时文中也给出数值方法的收敛性和稳定性分析。最终得到的数值实验结果与理论分析高度吻合。3.我们给出了一种求解多维Volterra型弱奇异积分方程的数值方法。基于Bernstein多项式在函数逼近论中的重要应用,本文将一维Bernstein多项式推广到维,并用其构造一组基函数来逼近未知函数。对于方程中的弱奇异积分,我们采用第二章提出的求积法和外推法来近似估计。同时,我们又将Gronwall不等式推广到多维,并利用推广的Gronwall不等式来证明原方程解的存在唯一性。本文也给出了数值方法的收敛性分析。从数值算例的计算结果可以看出,该方法是一种行之有效的数值方法。4.本文给出了一种求解分数阶积分-微分方程的数值方法。直接对分数阶方程解的存在唯一性进行分析难度较大。因此,我们将分数阶积分-微分方程转化为等价形式的第二类Volterra型积分方程,并利用第三章推导的Gronwall不等式对方程解的存在唯一性进行分析。转化为积分方程后,不需要对未知函数进行求导运算,一方面降低了求解问题的复杂度;另一方面可以提高计算精度。对于转换后的方程,我们可以利用离散配置法求解,并证明“离散配置法”与“迭代Nystr?m法”等价,然后在Nystr?m法的理论框架下对其进行收敛性分析。