论文部分内容阅读
分数阶微积分是研究任意阶微分和积分的理论,它是经典的微积分理论在阶次上的广义形式.其以加权形式积累了函数的全局信息,也称作记忆性,从而更加符合现实中的生物神经网络.自然地,分数阶微积分被引进人工神经网络,用以构建更加精确的数学模型,特别是能更准确地描述现实世界中具有记忆特性和历史依赖性的物理变化过程和系统变化状态,可以进一步提高对这类动态系统的设计、表征和控制能力.因此分数阶神经网络具有极大的应用前景和研究价值.本文主要针对Caputo型分数阶Hopfield神经网络,探讨其动力学行为及其控制问题.主要工作分为以下几个部分:第二章考虑了分数阶时滞复值神经网络非Lyapunov意义下的稳定性,即短时稳定性.与Lyapunov意义下系统轨线的渐进行为不同,这里要求从初值的某一邻域内出发的解,在一有限的时间区间内总有常数边界.首先将复值网络等价转化为实值网络,接着直接利用有限时间稳定性定义、分数阶微积分性质,以及一些不等式技巧对阶数分不同情况进行讨论,得到了具有时滞的分数阶复值神经网络的短时稳定性的两个充分性判据.第三章在微分包含理论和Filippov解的框架下研究了具有两类不连续激活函数的神经网络的同步控制.首先在复数域上考虑了不连续激活的整数阶神经网络,通过设计一类反馈控制器,实现了该网络的固定时间同步,不仅如此,还通过改进的控制器,提出了网络的固定时间反同步策略,并得到了与初值无关的停息时间,这意味着网络同步的收敛速度可根据实际需要人为设定和调整.其次,在整数阶的基础上进一步考虑了具有不连续激活函数的分数阶双向联想记忆(BAM)网络.在Filippov不连续性理论的框架下,利用凝聚映射的固定点定理获得了这类网络解的存在性.接着,为实现网络的Mittag-Leffler同步,基于不同的视角和需求分别提出两类控制策略,即反馈控制和脉冲控制,并利用不同的分数阶系统的比较原理,获得了相应的同步判据.第四章考察了两类分数阶耦合神经网络的动态特性.首先讨论静态耦合的分数阶复杂网络,重点关注其耗散性,这是比稳定性更一般的系统特征.利用分数阶线性系统的稳定性结论和Laplace变换,获得了这类网络耗散性的充分条件.其次,考虑了动态耦合的情况,特别提出了自适应的动态耦合分数阶网络,重点关注其同步控制.采用牵引控制策略,其中牵引规则放宽至自由选择牵引节点和数量,并利用分数阶非线性系统的稳定性结论和一些不等式技巧,得到了网络中各节点Mittag-Leffler同步的充分性判据.第五章在有向网络和无向网络两种拓扑结构下,分别分析了具有脉冲影响的耦合惯性神经网络的无源性.系统中二阶的惯性项对动力学分析带来了一定的困难,为此,引入与一阶导数相关的新变量对原网络进行降阶处理.接着,借助有向网络权值矩阵的特征向量信息,以及无向网络权值矩阵的对称性,构造不同的Lyapunov函数,分别得到了有向网络和无向网络拓扑下耦合惯性神经网络的无源性条件,包括严格输入无源和严格输出无源.相较而言,无向网络的无源性条件比有向网络更加简单,容易构造.