直喷式内燃机燃烧噪声的诊断分析与仿真优化研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:jg1983
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
直喷式内燃机的燃烧噪声问题是直喷式内燃机整机噪声问题的重要组成部分,本文围绕直喷式内燃机燃烧噪声的诊断分析与仿真优化方法展开了一系列研究。主要的工作内容与成果如下:首先,对某型直喷式柴油机进行了燃烧噪声优化试验研究,选取了符合排放和性能指标的喷油参数进行调节,并进行了试验测试流程设计。分别得到了单变量轨压、主喷角、预喷间隔、预喷油量的优化结果。在此基础上,进行了改进版正交试验多变量优化设计及实施,在中低转速区域对整机燃烧噪声进行了优化,并保证了整机排放及性能指标。利用缸压曲线与衰减曲线对整机燃烧噪声进行了预测,建立了低中高三个频段燃烧噪声同各个燃烧噪声指标之间的关系。并分析了两类燃烧噪声,中频隆隆声与高频振荡燃烧噪声随喷油参数,轨压、主喷角、预喷间隔、预喷油量之间的变化规律,得到了较为普适性的缸压相关参数同机械噪声与两类燃烧噪声的直接关系。随后,对该型直喷式柴油机进行了高频振荡燃烧噪声机理的研究,进行了直喷式柴油机缸压高频成分分离及影响因素试验,采用了自适应TVF-EMD方法对缸内高频振荡进行了分离,并定义了三种指标,分别是中心频率,归一化能量和平均中心频率进行研究。分析了内燃机转速、负荷、轨压、及其他参数对高频振荡的影响,并提出了改进方法,该信号处理方法同样适用于其他内燃机。进而,将直喷式柴油机燃烧噪声的研究成果进行了类比推广,针对某型四缸缸内直喷汽油机进行了燃烧噪声试验优化,燃烧噪声源诊断、及缸压高频振荡分离研究,并将固定转速和负荷的场点噪声频率峰值(可以认为是燃烧噪声变化)同缸内直喷汽油机的燃烧室声振荡频率模型进行了比较。之后,以之前的试验直喷式柴油机和缸内直喷汽油机为例,分别建立了一维热力学整机仿真模型,同试验缸压进行了验证,建立了基于一维仿真火焰传播参数同试验整机噪声值的燃烧噪声多元回归预测模型。可以对燃烧噪声进行较为有效的预测。在此基础上,建立了三维流体力学缸内燃烧仿真模型,也同试验缸压进行了验证,最终建立了基于燃烧噪声试验和三维缸内流场仿真相结合的燃烧噪声优化方法。同时探讨了燃烧噪声源优化的深层次机理。最终,建立了一整套直喷式内燃机燃烧噪声试验诊断分析、信号分离及仿真预测优化研究方法。
其他文献
随着全球近几十年的快速发展,传统能源开始出现短缺和枯竭的迹象,在未来已不足以支持人类的高速发展。为了解决这个问题,太阳能光热发电技术被认为是一个有竞争力的候选者。太阳能光热电站自带储热系统,一天内能实现24小时连续发电,已成为最有潜力的可再生能源应用方式之一。基于上述背景,本文重点关注并开展了光热电站中的关键设备——高温熔盐吸热器的热性能、热应力和其预热过程等相关的研究。首先,本文研究了光热电站的
非常规高温超导机理是凝聚态物理重要的科学问题,其核心在于研究电子配对的成因,而探测超导体的配对对称性以及能隙函数可以反映体系的配对相互作用。对于空穴掺杂的铜氧化物高温超导体,其具有d波超导能隙,即在动量空间每旋转90度,能隙的大小不变但符号发生反转。人们已经积累了许多实验结果证明角度依赖的d波能隙大小,但真正证明其d波相位变化的实验少之甚少。对于铁基高温超导体,s±配对模型是基于弱耦合图像被提出并
学位
受自然界中有机生物体固有自愈合特性的启发,近些年来基于物理或化学策略合成的仿生智能自修复材料已经被广泛研究并且可以有效延长功能性高分子材料的使用寿命。由于材料在长期使用过程中产生的微裂纹会迅速扩展成为宏观裂缝而难以修复,因此从实际应用的角度出发,发展无需任何外界刺激辅助的室温快速高效自修复体系至关重要。本论文通过对不同类型自修复材料的内在修复机理进行系统地探究以及合适的调控,成功制备得到多种可室温
随着航天事业的发展,航天任务的类型与目的愈加丰富,航天活动的范围日益阔大。按照航天器与地球的距离,大致可将其分为地球附近的航天活动、地月空间的探测以及行星际的深空探测等几个方面,本文从这三个方面中各选取了一个重要的问题进行研究:1.本文研究了地球附近空间电推进系统多圈轨道转移问题,提出了一种改进的半分析方法来求解与优化电推进轨道转移,降低转移轨道所需的时间与燃料消耗。本文采用春分点根数作为航天器的
硫化铜(Cu2-xS,0≤x≤1)纳米材料是一类重要的、由金属硫族化合物组成的无机纳米材料,具有较强的近红外吸收和优异的光热、光电性能,而且生物相容性好、合成方法简单、稳定性高,已被广泛应用于肿瘤治疗等生物医学领域中。然而目前发展的Cu2-xS纳米材料在生物医学领域的应用还存在以下不足:(1)单独使用Cu2-xS的光热效应用于肿瘤光热治疗的效果有限,导致肿瘤在治疗后容易出现转移和复发;(2)基于C
近几十年来,尽管OSCC治疗理念不断改进,其5年生存率依然不足60%。局部区域复发是导致治疗失败的主要原因。准确评估OSCC外科切缘和淋巴结状态是减少局部区域复发的重要举措。尽管术后病理检查是评估OSCC外科切缘和区域淋巴结状态的金标准,但是受限于取材、工作量等因素,病理检查存在假阴性可能。随着技术发展,NIR成像和Micro-CT成像技术在医学领域应用越来越广泛。其中,基于ICG?的NIR成像可
在过去的二十多年里,纳米孔技术作为单分子检测技术的重要一员,因其免标记、免放大、高灵敏度、实时识别等诸多优点而备受关注。生物纳米孔是最早被发现和使用的纳米孔,由于具有原子精确的结构重现性、易于大量制备以及同许多生物学上重要分析物分子尺度相似的孔径等优势而受到研究者的广泛青睐。1996 年,Kasianowicz 等人率先使用天然的 α-溶血素(alpha-hemolysin,α-HL)生物纳米孔表
全球气候在不同时间尺度上正以前所未有的速率发生变化。这种变化带来了很多方面的挑战:例如,这种变化是如何发生的,未来这种变化将具有怎样的特征,特别在与人类生存环境直接相关的海平面的上升、极端天气和气候事件的增多等方面。人类如何应对这种气候变化更是一个急需解决的课题。本论文的研究正是在这样一个背景下设计和进行的。我们试图在两个不同却又互相交织的学科上获取新的理解:(1)气候变化本身;(2)这种气候变化
固体材料的热传导现象是其内部电子、声子等微观粒子相互作用的宏观体现。材料的热导率一方面反映晶格的特性,另一方面反映微结构对传热粒子的影响。氧化物体系具有丰富的结构自由度,是研究材料性质与结构关系的良好平台。近年来,时域热反射谱(TDTR)等热学表征方法的迅速发展也使得测量尺寸为毫米量级的氧化物单晶的热导率成为了可能。本文中,通过TDTR法对几种典型结构(包括层状结构和钙钛矿结构)氧化物单晶材料的热