论文部分内容阅读
布尔代数是信息科学中的重要数学工具,内容丰富,应用广泛。 本文编写整理了布尔代数理论中较为实用的部分,主要包括布尔代数结构、布尔函数、布尔方程、布尔矩阵等方面的基础内容。 本文研究了布尔代数上的不动点方程组,取得了下列成果: (1)定出了不动点方程组 的再生通解。并给出了不动点方程组有唯一解的充分必要条件[定理2.1~2.2]。 (2)证明了列直交不动点方程组 与线性方程式 有相同的直交解和正交解。并依此在有限布尔代数上定出了列直交不动点方程组的全部正交解数[定理2.3~2.4]。 自动机理论是计算机科学中的一个重要组成部分,在通讯、检测、生物、神经、心理、智能、经济和社会等诸多领域都有着广泛应用,其研究与计算机软硬件发展密切相关。本文研究了布尔代数上非可逆的线性内动机,取得了下列成果: (1)给出了线性内动机下向树形中每一层节点的计数公式和下向树是等叉下向树形的判定条件[定理3.2~3.3]。 (2)定出了线性内动机的图型是圈-树形的充分必要条件[定理3.7~3.8]。 (3)讨论了非可逆线性内动机在正规空间、直交空间、正交空间上的图型结构问题[定理3.10~3.13]。 布尔环是有零因子环,此与一般整环有重要差别,这给线性特征的研究带来了较大困难。本文研究了有限布尔环上的内动机图型结构,取得了下列成果: (1)定出了布尔环上的一类具有等叉下向树形的线性内动机和一类可逆线性内动机的图型〔定理4.1~4.4]。 (2)证明了布尔环上的一类可逆线性内动机的图型与其仿射内动机的图型相同〔定理4.5〕。