【摘 要】
:
新一代军用战机面临的全方位、超宽频雷达探测威胁和日益严重的电磁辐射污染使高性能电磁波吸收材料在军用和民用领域都面临着迫切需求。理想的吸波材料要求具有“宽、轻、薄、强”的性能特点,而传统的铁氧体等吸波材料存在吸波频带窄、密度大等性能缺陷。碳基纳米材料具有轻质、高介电损耗、易与其他材料复合等性能优势,尤其是可以通过微结构的调控可以实现对电磁参数,吸波性能和材料密度等关键性能指标的优化。有望达到服役环境
论文部分内容阅读
新一代军用战机面临的全方位、超宽频雷达探测威胁和日益严重的电磁辐射污染使高性能电磁波吸收材料在军用和民用领域都面临着迫切需求。理想的吸波材料要求具有“宽、轻、薄、强”的性能特点,而传统的铁氧体等吸波材料存在吸波频带窄、密度大等性能缺陷。碳基纳米材料具有轻质、高介电损耗、易与其他材料复合等性能优势,尤其是可以通过微结构的调控可以实现对电磁参数,吸波性能和材料密度等关键性能指标的优化。有望达到服役环境对吸波材料的性能要求。因此,本文从碳基纳米复合材料微结构的设计与调控出发,采用水热合成、原位生长、冷冻铸造等方法,制备了具有不同微结构的碳基复合吸波材料。研究了微结构形式对电磁波吸收性能的影响规律,分析了吸波机理,并对其应用前景进行了探索。主要研究内容如下:为了解决传统吸波材料吸收频带窄的问题,本文采用设计特殊微结构和引入多种损耗机制的研究思路,通过两步水热合成及保护气氛热处理制备了具有蝴蝶结状微结构的Co/CoO@C纳米复合吸波材料。研究了水热反应时间和热处理温度对微结构形貌的影响规律。考察了其在2-18GHz频段内的电磁参数和电磁波反射损耗(Reflection Loss,RL)。结果表明,热处理温度的调节实现了对样品电磁参数的有效调控。600°C热处理得到的Co/CoO@C-600样品具有优异的宽频吸波性能,3mm厚度下有效吸收(RL<-10 d B)频带宽度可达9.9GHz(8.1-18GHz),最低反射损耗(RLmin)达到-33.6dB;6mm厚度下,有效吸收频带宽度进一步扩展到了13.6GHz(4.4-18GHz),覆盖考察频段的85%,同时RLmin也进一步降低到了-45.0dB。优异的宽频带电磁波吸收能力有赖于蝴蝶结状微结构对电磁参数的调节作用和Co/CoO@C颗粒的磁性/介电协同损耗机制,也使这种蝴蝶结状Co/CoO@C纳米复合材料具有很高的实际应用潜力。为了实现吸波材料轻质化的目标,本文采取将轻质生物质材料与分子级多孔结构的金属有机框架(metal-organic-frameworks,MOFs)复合的思路,在棉花纤维表面均匀生长了含钴元素的ZIF-67(zeolitic imidazolate framework-67)MOF颗粒。通过还原性气氛中的高温碳化同时实现了复合纤维的碳化和碳纳米管的原位催化生长,得到了具有微-纳分级结构CNT/Co/C空心复合纤维。自然状态下表观密度仅0.0198g/cm3。通过测试复合纤维的电磁参数计算了2-18GHz的电磁波反射损耗。2mm厚度下,有效吸收频带宽度达到了8.02GHz(9.98-18 GHz)。薄厚度下的宽频吸波效果主要归功于分级结构改善了阻抗匹配特性以及介电/磁性异质成分造成的多种极化损耗机制。这种将天然生物质衍生的碳材料与MOFs复合的方法也为超轻质宽频吸波材料的开发提供了一种新策略。为了探索低维纳米材料宏观组装体的结构形式对吸波性能的影响,同时开展吸波材料多功能一体化研究,本文以高导电二维Ti3C2Tx MXenes纳米片为材料基元,采用定向冷冻铸造法制备了轻质Ti3C2Tx/明胶定向结构复合气凝胶(M@G)。通过引入明胶作为粘结剂解决了Ti3C2Tx纳米片层间范德华力弱造成的气凝胶力学强度差的问题。Ti3C2Tx纳米片的面内/面外本征物理特性差异及定向排布结构赋予了复合气凝胶各向异性的力学、导热和电磁吸波性能。复合气凝胶在轴向(冷冻铸造过程冰晶生长方向)表现出高压缩强度和负泊松比,而在径向(垂直于冰晶生长方向)则具有高弹性和接近零泊松比;M@G-45(Ti3C2Tx含量为45wt%)复合气凝胶轴/径向热导率差异达到14.75倍,径向最低热导率达到0.008W/m·K,具有优异的隔热性能。吸波性能方面,M@G-45复合气凝胶径向在4.08GHz处RLmin达到-57.3dB,但有效吸收频带宽度仅0.9GHz,而轴向RLmin峰值为-59.5dB移动到了14.04GHz,有效吸收频带宽度也显著扩展到了6.24GHz,宽频吸波性能得到明显改善。这种通过调控二维纳米材料组装形式实现吸波性能调节的方法,为轻质多功能吸波材料的制备提供了借鉴。
其他文献
目的 探究青藤碱对人肝癌HepG2细胞的抑制作用。方法 采用CCK-8试剂盒检测青藤碱对HepG2细胞增殖的抑制率,在荧光显微镜、倒置显微镜下观察细胞形态,流式细胞仪检测细胞凋亡率、ROS水平、线粒体膜电位、MPTP,Westernblot实验检测Cyt-c、caspase-9、caspase-3、Bcl-2、Bax蛋白表达。结果 青藤碱对HepG2细胞具有生长抑制作用,72hIC50为1.4mm
C1orf109是课题组前期获得的一个功能未知基因,定位于h Ch1p34.3。NCBI数据库数据显示C1orf109有多个转录本,可编码多个存在长度和/或序列差异的蛋白质。课题组前期发现C1orf109短转录本编码203个氨基酸的蛋白参与肿瘤细胞的细胞周期调控,影响细胞的迁移运动。但截至目前,C1orf109更加深入的功能却未见报道。本研究的目的在于揭示C1orf109长编码转录本(C1orf1
空间轨道存在的失效飞行器,已经严重威胁到了在轨装备的安全运行,利用空间机械臂完成轨道清障具有重要意义。但失效飞行器没有特定的抓捕接口和视觉测量靶标,绝大多数目标处于自旋复合章动的翻滚状态,捕获这类大惯量失稳目标对机械臂的控制性能是巨大的挑战。在这一背景下,以空间机械臂捕获大惯量非合作失稳目标为对象,本文对空间机械臂阻抗控制、动力学参数辨识方法、状态观测技术、抗扰动设计和基于视觉反馈的运动规划方法开
随着网络通信技术和计算信息技术的进步,网络化控制近年来得到了长足的发展。区别于传统点对点控制系统,网络化控制系统中的被控对象、传感器、控制器、执行器等各系统部件之间利用共享的通信网络实现数据的传输,从而使得资源共享和远程控制得以实现。由于网络化控制系统易于安装、便于维护,其在工业生产和社会生活的各个领域得到了广泛的应用。另一方面,随着控制系统逐渐趋于大型化和复杂化,系统部件或子系统发生故障可能导致
涡轮冲压组合发动机(TBCC)因具备不需携带氧化剂、可水平起降、安全性高等优势,可作为两级入轨可重复使用运载器、高超声速飞机等军民两用飞行器的推进系统,是近些年来研究的热点。TBCC发动机一般由燃气涡轮发动机和亚/超燃冲压发动机组成,这两级发动机之间的工作切换过程被称为转级过程。TBCC转级过程中因为两级发动机同时工作,所涉及可调变量繁多、非线性特性显著,因此协调诸多控制变量使得组合发动机维持总推
近年来,光催化技术在分解水产H2以及环境污染的修复等领域取得了长足的进步,利用光催化剂实现太阳能的转化越来越成为实现可持续发展的重要手段。钨基光催化材料由于具有多价态和表面等离激元等性质,使其具备全光谱光催化活性,而表面等离激元效应具有提高光吸收、增强光生电子激发以及高催化反应活性等优点。因此,研究表面等离激元对钨基光催化材料的光吸收调控、光生载流子分离及其光催化机理,可为钨基材料在工业废水处理以
烷基苯的直接氧化产物醇、醛、酮及酸是工业上重要化学品的中间体,在工业上和实验室都具有重要的价值。早期使用一些强氧化剂进行烷基苯的氧化反应存在腐蚀性强、高毒性、选择性差、不经济和处理困难等诸多问题。为了满足生产和生活上可持续发展的需要,基于宏观三维大孔树脂的无模板法开发多种环境友好、高稳定性、低成本、高选择性又可重复使用的介孔碳基材料用来催化乙苯到苯乙酮反应是本论文研究重点。主要包括以下三个部分:第
状态估计在控制理论研究和实际工程应用中都是最重要的研究课题之一。实际系统往往受到未建模动态、干扰、噪声等不确定性因素的影响,很难得到准确的状态估计。如何处理不确定性因素的影响是状态估计最重要的一个问题。目前,主要有两种处理不确定性因素的方法:一种是基于随机概率理论的方法,另一种是集员方法。基于随机概率理论的方法需要干扰和噪声等的概率分布的先验知识,但可能与实际系统中的情况存在一定偏差。另外,一些本
汽车底盘控制对于保障车辆安全性能以及舒适性能具有极其重要的意义。本文针对汽车底盘系统开展了从单一系统研究、到系统间协调控制,再到整车一体化控制的系列研究工作,具体研究内容如下:在汽车制动过程中,车轮抱死会增加制动距离甚至失去转向能力,给车辆行驶安全带来巨大的隐患,因此对汽车制动防抱死系统(ABS)的研究至关重要。但是目前众多ABS研究中棘手的问题在于:1)需要引入极度复杂的轮胎——路面摩擦模型(μ
事理逻辑知识是指事件在时间和空间上发生和演化的规律和模式,包括事件之间的顺承、因果、条件、蕴含和上下位等关系。这是一种非常有价值的知识类型,挖掘这种知识对我们认识人类行为和社会发展变化规律非常有意义,对于人工智能领域的多种任务具有非常巨大的应用价值。然而,以知识图谱为代表,现有的大型公开知识库普遍是以实体及实体间的关系为核心,未能对事理逻辑这一类重要常识知识进行存储和表示。为了对传统知识图谱的表征